说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 卫星数据共享
1)  satellite data sharing
卫星数据共享
2)  remote sensing data sharing
卫星遥感数据共享
3)  data sharing
数据共享
1.
Quick response system for textile & apparel supply chain based on XML data sharing;
基于XML数据共享的纺织服装供应链快速响应系统
2.
Studies on the scientific data sharing with the Web services technology;
基于Web Services技术的科学数据共享研究
3.
Framework and realization of water scientific data sharing network;
水利科学数据共享网的构架与实现
4)  data share
数据共享
1.
Application of Web feature service-based data share to earthquake disaster reduction;
基于WFS的空间数据共享在地震减灾中的应用
2.
Research of Distributed Spatial Data Share Platform Based on Jabber;
基于Jabber的分布式空间数据共享模型研究
3.
Net-connection and data share between large-scale computers IBM and SGI;
IBM和SGI大型处理计算机网络连接与数据共享
5)  data-sharing
数据共享
1.
The data-sharing of the Linux multi-proccess running;
Linux多进程运行的数据共享
2.
The data-sharing among threas is an important research topic.
多线程中的数据共享是一个重要研究课题,现给出了多线程之间处理数据的新模式,该模式的核心是:通过克隆线程的目标对象,使得多线程具有相同结构的目标对象却不共享目标对象的数据,这种新模式增强了利用多线程解决实际问题的能力。
6)  data shared
数据共享
1.
Realizing Mechanism of Data Shared Base On C++;
C++中数据共享的实现机制
2.
Research & realization on data shared of "digital basin;
“数字流域”中数据共享机制研究与实现
3.
If we have made the geologic data shared in the different of the hard wares and soft wares Working on each system and platfom, ,we should not only set up the collection and shared criterion of the data,but also resolve the problem of the different structure of the data,quickly update and maintain the bulky data,and keep on researching the Client/Sever, WebGIS and Browser/Sever.
地球科学数据共享是时代的需求,实现地球科学数据跨系统、跨平石在不同硬件、软件平台下共享,必须建立健全地球科学数据的采集标准、共享标准,必须解决地球科学数据的异构问题、海量数据的快速更新与维护技术以及研究C/S结构、WebGIS技术及 B/S结构的有机结合等难题。
补充资料:跟踪和数据中继卫星
      转发地球站对中、低轨道航天器的跟踪、遥控信息和转发航天器发回地面的数据的通信卫星(图1 )。高频段电波的直线传播特性和地球曲率的影响,使测控站跟踪中、低轨道航天器的轨道弧段和通信时间受到限制,跟踪和数据中继卫星相当于把地面上的测控站升高到了地球静止卫星轨道高度,一颗卫星就能观测到大部分在近地空域内飞行的航天器,两颗卫星组网就能基本上覆盖整个中、低轨道的空域。因此由两颗卫星和一个测控站所组成的跟踪和数据中继卫星系统,可以取代配置在世界各地由许多测控站构成的航天测控网。跟踪和数据中继卫星的主要用途是:
  
  
  ① 跟踪、测定中、低轨道卫星:为了尽可能多地覆盖地球表面和获得较高的地面分辨能力,许多卫星都采用倾角大、高度低的轨道。跟踪和数据中继卫星几乎能对中、低轨道卫星进行连续跟踪,通过转发它们与测控站之间的测距和多普勒频移信息实现对这些卫星轨道的精确测定。
  
  ② 为对地观测卫星实时转发遥感、遥测数据:气象、海洋、测地和资源等对地观测卫星在飞经未设地球站的上空时,把遥感、遥测信息暂时存贮在记录器里,而在飞经地球站时再转发。这种跟踪和数据中继卫星能实时地把大量的遥感和遥测数据转发回地面。
  
  ③ 承担航天飞机和载人飞船的通信和数据传输中继业务:地面上的航天测控网(见航天测控和数据采集网)平均仅能覆盖15%的近地轨道,航天员与地面上的航天控制中心直接通话和实时传输数据的时间有限。两颗适当配置的跟踪和数据中继卫星能使航天飞机和载人飞船在全部飞行的85%时间内保持与地面联系。
  
  ④ 满足军事特殊需要:以往各类军用的通信、导航、气象、侦察、监视和预警等卫星的地面航天控制中心,常须通过一系列地球站和民用通信网进行跟踪、测控和数据传输。跟踪和数据中继卫星可以摆脱对绝大多数地球站的依赖,而自成一独立的专用系统,更有效地为军事服务。
  
  1983年4月,美国从"挑战者"号航天飞机上发射了第一颗跟踪和数据中继卫星(TDRS)(图2 ),它是现代最大的通信卫星,也是首次在一颗卫星上同时采用S、C和 Ku3个频段的通信卫星。卫星重2吨多,太阳电池翼伸开后,翼展达17.4米,横向跨度为13米。卫星工作10年后,太阳电池阵仍可提供1850瓦功率。星体采用三轴姿态控制稳定方式(见航天器姿态控制)。卫星上装有 7副不同类型的天线。两副直径 4.9米抛物面天线在卫星发射过程中收拢成筒状,入轨后通过机械螺杆控制撑开呈伞形,每个天线有两副馈源,分别用于S和Ku频段的跟踪和数据中继。一副直径为 2米的抛物面天线用于对卫星通信地球站的Ku频段双向通信。这3副天线均装在精密的万向架上,由地面指令控制,能自动跟踪其他航天器,指向精度达0.06°。星体中部是30个螺旋组成的 S频段相控阵天线,用作多址通信。还有一副直径1.12米的Ku频段抛物面天线和一副C频段铲形天线,用于美国国内通信。Ku、S频段转发器能提供的通信容量有20个S频段多址信道,2个S频段单址信道和2个Ku频段单址信道。此外,12个C频段转发器可传输电话、电视和数据等。
  
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条