1) three-point boundary value problem
三点边值问题
1.
Existence of multiple positive solutions for one kind of second-order three-point boundary value problem;
一类二阶三点边值问题多重正解的存在性
2.
Existence and multiplicity of positive solutions to nonlinear fourth-order three-point boundary value problems;
非线性四阶三点边值问题的正解存在性与多解性
3.
Solvability of a class of second-order three-point boundary value problems with first derivative;
一类含一阶导数的二阶三点边值问题的可解性
2) three-point boundary value problems
三点边值问题
1.
Solvability of a class of three-point boundary value problems;
关于一类三点边值问题的可解性
2.
The existence of single or multiple positive solutions of three-point boundary value problems involving one dimensional p-Laplacian was considered.
利用Krasnoselskii’s不动点定理和重合度定理,研究了p-Laplace三点边值问题单解或多解的存在性,以及在共振情况下解的存在性。
3.
A class of nonlinear three-point boundary value problems is considered,and the existence of positive solutions is obtained by making use of the Krasnosel skii fixed point theorem of cone expansion-compressions type.
研究了一类非线性三点边值问题,通过利用锥拉伸与锥压缩型的Krasnosel′skii不动点定理获得了其正解的存在性。
3) three point boundary value problem
三点边值问题
1.
In this paper we prove at first a fixed point theorem on double dones,and discuss the existence of two positive solutions for a class of second order three point boundary value problems with sign changing nonlinearities by using the theorem.
首先证明双锥上的一个不动点定理,并通过该定理研究一类具有变号非线性项的二阶三点边值问题两个正解的存在性。
4) third-order three-point boundary value problem
三阶三点边值问题
1.
Positive solutions of a nonlinear third-order three-point boundary value problem
非线性三阶三点边值问题的正解
2.
The solvability is considered for a class of third-order three-point boundary value problem with first and second derivatives.
讨论了一类非线性项含一阶和二阶导数的三阶三点边值问题的可解性。
3.
In this paper we investigate the existence of positive solution for a class of nonlinear third-order three-point boundary value problem:u(t)=a(t)f(t,u(t)),0<t<1,u(0)=δu(η),u′(η)=0,u″(1)=0Where δ∈(0,1),η∈[1/2,1),are constants.
利用锥拉伸和锥压缩不动点定理讨论了下列非线性三阶三点边值问题其中δ∈(0,1),η∈21,1是常数,当f满足一定条件时得到其正解的存在性。
6) nonlinear three point boundary value problems
非线性三点边值问题
1.
The methods of up-lower solution is used to study the existence of solutions of nonlinear three point boundary value problems for nonlinear 4 nth order differential equation.
本文利用上-下解的方法,讨论了非线性4n阶常微分方程的非线性三点边值问题解的存在性。
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条