1) complex normal matrix
复正规矩阵
1.
By using a kind of decomposition of complex normal matrix and Gersgorin disc theorem,the classical Greub-Rheinboldt inequality on the case of positive definite Hermite matrix and the classical Courant-Fisher theorem on the case of Hermite matrix are improved to the case of the complex normal matrix,so two results can be obtained on the complex normal matrix.
利用复正规矩阵的一个分解和Gersgorin圆盘定理等工具将经典的关于正定Hermite矩阵的Greub-Rheinboldt不等式和关于Hermite矩阵的Courant-Fisher定理推广到复正规矩阵的情形,得到了关于复正规矩阵的两个结论。
2.
And the classical Courant-Fisher theorem is applied to the complex normal matrix by using a kind of decomposition of complex normal matrices.
将一类特殊复正规矩阵的特征值问题转化为一般的复正规矩阵的相应问题,利用复正规矩阵的一个分解将经典的Courant-F isher定理推广到这类复正规矩阵上。
2) sub-normal matrix
次正规复矩阵
3) normal matrix
正规矩阵
1.
Several equivalent conditions of a normal matrix
正规矩阵若干判定及性质
2.
The factorization of a complex skew-symmetric normal matrix,which is similar to a complex symmetric normal matrix,was demonstrated using a logically similar method.
提出一个复矩阵是对称酉矩阵的充要条件,并用逻辑上类似的方法证明一个类似于复对称正规矩阵的复斜对称正规矩阵的分解,最后对复斜对称矩阵得到了类似于复对称矩阵Takagi分解的结论。
3.
The eigenvalues of a normal matrix are not sensitive to its elements perturbation.
基于正规矩阵特征值对其元素变化的不敏感性,讨论线性系统极点的正规配置问题,即设计状态反馈控制律,将闭环控制系统极点配置到期望位置的同时使闭环状态矩阵为正规矩阵,从而达到增强控制系统的鲁棒性的目的。
4) regular matrix
正规矩阵
1.
Several Sufficient Prerequisites for the Actual Number Regular Matrix Definite;
实正规矩阵正定的判定条件
2.
In this paper, we get several properties about this kind of matrix including three adequate conditions and two contract forms according to the important properties of regular matrix and exchangeable matrix.
利用正规矩阵和乘积可交换矩阵的重要性质 ,给出了亚正定矩阵的三个充分条件以及其合同矩阵的两个分解形式 。
5) normal matrices
正规矩阵
1.
Generalized positive definite matrices and normal matrices;
广义正定矩阵和正规矩阵
2.
The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered.
考虑在给定谱约束和Frobenius范数意义下用正规矩阵最佳逼近一个给定复方阵的问题。
6) Hermite normal matrix
Hermite正规矩阵
补充资料:几复寄槟榔且答诗劝予同种复次韵寄之
【诗文】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条