说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地埋管换热器
1)  ground heat exchanger
地埋管换热器
1.
Heat transfer of ground heat exchanger for GSHP(1):a review;
地源热泵地埋管换热器传热研究(1):综述
2.
Study on freezing characteristics of soil around ground heat exchangers of ground-source heat pumps based on apparent heat capacity method;
基于显热容法的地源热泵地埋管换热器周围土壤冻结特性研究
3.
Experimental investigation into heat exchange performance of three ground heat exchangers in winter in hot summer and warm winter zone;
夏热冬暖地区三种地埋管换热器冬季换热能力的实验研究
2)  buried tube heat exchanger
地埋管换热器
1.
Taking the hybrid ground source heat pump with cooling tower as research object,a simplified calculation model of buried tube heat exchanger is established.
以配置冷却塔的复合式土壤源热泵为研究对象,建立了地埋管换热器简化计算模型。
2.
A mathematical model for calculating soil temperature around double U-type buried tube heat exchanger is constructed.
建立了计算地埋管换热器周围土壤温度的数学模型。
3.
The numerical simulation of heat transfer characteristics of buried tube heat exchanger with intermittent operation mode of ground-source heat pump is performed using two-dimensional unsteady heat conduction model.
运用二维非稳态导热模型对地源热泵夏季间歇运行模式地埋管换热器的换热特征进行了数值模拟,分析了间歇运行模式对地埋管换热器性能的影响。
3)  geothermal heat exchanger
地下埋管换热器
1.
Because it is necessary to know the influence of groundwater advection on performance of vertical geothermal heat exchanger (GHE), coupled heat conduction and advection experiments on soil were implemented.
为确定地下水渗流对竖直地下埋管换热器的影响,该文从实验角度出发,分别对无渗流土壤、饱和土壤中地下埋管换热器热负荷对其周边土壤温度场的影响,有渗流土壤中地下水流速、土壤初始温度以及埋管热负荷对土壤温度场的影响进行了实验,从而得出在夏热冬冷地区或亚热带地区应用土壤源热泵时,宜采用冷却塔-土壤源热泵混合系统形式或将地下埋管换热器埋设在地下水流速较大地区,以期土壤源热泵的长期良好运行。
2.
In order to analyze the pipe space influence on heat transfer of geothermal heat exchanger used in an Integrated Soil Cool Thermal Storage and Ground-Source Heat Pump System(ISCTS&GSHP) under condition of groundwater advection,an overall solution is utilized to compute the whole temperature contour including fluid in pipe,pipe wall and the surrounding soil.
为分析有地下水渗流情况下土壤蓄冷与土壤耦合热泵集成系统中竖直地下管群换热器的管间距问题,本文基于热渗耦合作用下的数学模型,采用整体求解方法求得冬、夏季工况下管内流体、地下埋管换热器及周围土壤的温度场数值解,从而分析了管间距对冬夏工况下不同联管方式管群换热器传热过程的影响,结果表明在冬夏工况下管间距影响不同,应根据具体的建筑负荷情况选择联管方式。
4)  underground heat exchanger
地下埋管换热器
1.
Heat transfer model of underground heat exchangers in ground-coupled heat pump systems;
土壤耦合热泵系统地下埋管换热器传热模型的研究
2.
To determine extent of the effect of groundwater advection on U-type vertical underground heat exchangers, based on a mathematics model considering thermal conduction and groundwater advection, utilizes an overall solution to obtain the whole temperature field including fluid in pipe, pipe wall and surrounding soil.
为确定地下水渗流对U型地下埋管换热器的影响,基于热渗耦合作用下的数学模型,采用整体求解方法求得管内流体、地下埋管换热器及周围土壤的温度场数值解。
3.
Underground heat exchanger models of U shape vertical ground heat pump system,standing column well system and hydronic and electric heating of pavement surfaces are analyzed.
本文针对目前较具代表性的地下埋管换热器模型、垂直U型埋管换热器模型、单井回灌式换热器传热模型、路桥融雪水平埋管模型作了分析,并根据现阶段的研究和应用情况,给出了地下埋管换热器传热的研究方向。
5)  ground heat exchanger
地下埋管换热器
1.
Experimental study on ground heat exchanger with different buried method;
不同方式地下埋管换热器的实验研究
2.
The factors affect the buried depth of ground heat exchanger areanalyzed and simulated.
在线热源理论的基础上,建立了土壤耦合热泵系统地下埋管换热器传热的数学模型,模拟分析了土壤的初始温度、盘管的入口水温、盘管流体流速及运行工况等因素对土壤耦合热泵系统地下埋管换热器单井埋深的影响 ;提出了以盘管内流体温度梯度和单位管长换热量为判定依据的确定地下埋管换热器单井埋深的方法。
6)  heat exchanger for ground-source heat pump
地源热泵埋管换热器
1.
The research progress of heat transfer model of the heat exchanger for ground-source heat pump;
地源热泵埋管换热器传热模型的研究进展
补充资料:埋管式地源热泵技术促进节能产业
直接利用地下土壤和地上空间季节性温度差,在夏季用于空调制冷、在冬季用于供暖供热的设想,如今已经变为现实。目前,这项地源热泵新技术经过众多天津市科研技术人员多年的反复试验已获得成功,天津市企业又将该技术发展为埋管式地源热泵,应用范围更加广泛。该技术现已运用在天津市红桥区老干部活动中心等工程中。  

   目前,国家鼓励发展可再生能源和新能源的高技术产业专项,其中太阳能供热和地源热泵供热制冷被列入重点领域。据介绍,地下土壤中蕴藏着丰富的温度资源,夏季地下土壤的温度低于地上空间的温度,冬季地下土壤的温度高于地上空间的温度。地源热泵技术就是利用这种季节性温度差,通过专门装置在夏季将地下土壤的低温资源转换到地上空间制冷,在冬季将地下土壤的高温资源转换到地上空间供热。而埋管式地源热泵更为直接,它把换热器埋设在土壤中,管内有密闭的水循环与土壤进行热量的交换,冬天吸收土壤蕴藏的热量,夏天把热量释放到土壤中储存,待冬天再用,对地下水资源不会造成影响。采用这种技术制造的中央空调不燃油、不燃气、不燃煤,根据需要灵活控制,开关由己,冷暖自如。    

   技术人员介绍说,按2005年全市房屋施工面积3000万平方米计算,如果其中1000万平方米建筑采用埋管式地源热泵技术,每年可节约标准煤11.9万吨,可减少烟气排放量13亿立方米,并且比传统中央空调系统运行费降低30%到60%。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条