1) basic vibration mode
基本振型
1.
According to the static deformation behavior of piers sited on elastic foundation,the piers basic vibration mode of continuous beam bridge was put forward,the mode included the elastic deformation only caused by force and the deformations derived from the foundation s rotation and translation.
根据位于弹性地基基础上连续梁的变形特性,假设桥墩的基本振型函数由自身变形、基础转动和平动引起的变形3部分组成。
2) dominant mode
基本振荡型
3) PSP model
基本偏振态模型
1.
Based on the PSP model of PMD theory, a dynamic PMD compensator with counteractive element having simplified three section configuration used for high capacity optical communication systems is proposed in this paper.
基于基本偏振态模型 ,采用三双折射元补偿结构 ,提出一种用于补偿高速率光纤通信系统中的偏振模色散的可行方案 此方案在一阶偏振模色散补偿的基础上 ,仅增加了对两个参量的控制 ,即可对高阶偏振模色散进行补偿 ,并且高阶补偿过程的参量控制完全独立于一阶补偿过程 ,极大的提高了偏振模色散的动态补偿效率 数值模拟结果表明 ,此方案的补偿效果也是显著
4) hypothetical fundamental mode
假设基本振型
1.
The computation results for several different mass distributions and several different hypothetical fundamental modes show that it is convenient and feasible to employ the principal upper bounds for earthquake-resistant checking calculation in majority of practical cases.
对几种不同质量分布和假设基本振型的计算结果表明,在大多常见情形用主上界做抗震初步设计和验算是方便可行的。
5) calculated/tested fundamental mode
测算基本振型
6) fundamental natural mode of vibration
基本固有振型
补充资料:振型
振型
Mode of vibration
振型(mode of vibration) 振型是指振动的特征方式。在自由振动系统中,振动是在特定的频率以某些特征型式进行的。振动的这些特征型式称为主振型。 举例说,理想弦能整体地按下式所定义的特征频率而振动: f~(1/ZL卜可俪不,其中乙是弦在两刚性支点间的长度,T是张力,水是弦单位长度的质量。弦上不同部分的位移由一个特征形状函数来决定。更具体地说,弦的每个部分的运动是和,in!竿卜i。〔2动)成比例,其中二是弦上棍明‘.l”一~、L)一~、一”““~卜甘v劝’~’--一J“一这个部分到一个固定端的距离,‘是时间。这种最简单的振动型式是弦的第一振型,即基本振型,它的频率则是基本频率。弦上所有各部分都以同样频率而振动,在同一瞬时由平衡位置偏离或返回。 弦也可以分两段振动,当一段由平衡位置朝正向偏离时,另一段朝反向偏离,或反过来运动。此时,弦上每个部分的运动仍可以由一个空间函数与时间正弦函数的乘积sin里竺 Lsin(4二ft)来描述。弦上所有各部分都一齐按时间的正弦函数以同一频率运动,而空间函数则决定两个按相反方向进行的运动。第二振型的频率是第一振型频率的两倍。类似地,更高阶振型具有的频率都是基本频率的整数倍。 由于诸频率是按1,2,3..·的比例,所以理想弦的诸振型都可以合适地称为谐振。但并非所有振动物体都具有谐振型。举例说,自由振动的理想鼓面的诸频率具有比值1,1. 59,2.14,2.30.二。事实上,大多数自由振动的实际系统都具有频率间不严格地按整数比的各个振型。参阅“振动”(vibration)条。 〔杨(R .w.Young)撰〕
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条