1) Bayesian classifier
贝叶斯分类器
1.
Application of Bayesian classifier to fault diagnosis of liquid propellant rocket engine;
贝叶斯分类器在液体火箭发动机故障诊断中的应用
2.
Improvement and design Bayesian classifier of intrusion detection;
入侵检测中贝叶斯分类器的改进和设计
3.
Influence of feature weight on text categorization performance of Bayesian classifier;
特征权对贝叶斯分类器文本分类性能的影响
2) Bayes classifier
贝叶斯分类器
1.
Application of incremental Bayes classifier on traffic congestion identification;
增量式贝叶斯分类器在交通拥堵判别中的应用
2.
Rough set and Bayes classifier were integrated in virus detection.
在病毒程序检测中将粗糙集与贝叶斯分类器相结合。
3) Bayesian classifiers
贝叶斯分类器
1.
In all the classification methods, Bayesian classifiers have high effect and the accuracy is satisfactory, so it has many application in actuality.
在众多的分类方法中,贝叶斯分类器在计算上具有非常高的效率,在某些应用问题上表现出诱人的分类精度,因而广泛地应用于许多实际领城中。
2.
An anti-fraud system is designed in this paper using the Bayesian classifiers of data mining technology to solve the client-fraud problems in telecom trade.
AFS系统(Anti-FraudSystem)通过运用数据挖掘技术中的贝叶斯分类器(BayesianClassifiers)来解决电信行业中的客户欺诈问题。
5) Bayesian classification
贝叶斯分类
1.
Study on the Strategy of Bayesian Classification of CSCL Automatic Heterogeneous Group;
基于贝叶斯分类的CSCL自动异质分组策略研究
2.
Research and Implementation of Rule-Learning Model of Intrusion Detection Based on Bayesian Classification;
基于贝叶斯分类的入侵检测规则学习模型的研究与实现
3.
Anti-spam model based on semi-Naive Bayesian classification model
基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型
6) Bayes classification
贝叶斯分类
1.
Principle and algorithm of incremental Bayes classification;
增量式贝叶斯分类的原理和算法
2.
The definition and methods of data classification are discussed,and algorithms of decision tree and simple Bayes classification and Bayes network reasoning are introduced.
讨论了数据分类的定义和方法,介绍了决策树分类和简单贝叶斯分类以及贝叶斯网络推理的算法,并给出具体的数据分类实例,利用过去已有的引进人才的经验数据分析提取规则,为以后的人才识别提供合理的、科学的技术支持。
3.
This system integrates inspection technology for filtering spam such as rules-filtering,Bayes classification,virus scanning and black/white list.
该系统整合规则过滤、贝叶斯分类、病毒检测和黑/白名单等垃圾邮件检测技术,采用评分方法判断邮件的垃圾性,并利用规则过滤给贝叶斯分类提供学习样本,提高了系统对新垃圾邮件的适应性。
补充资料:贝叶斯分类器
在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。分类器是对每一个输入模式赋予一个类别名称的软件或硬件装置,而贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。它的设计方法是一种最基本的统计分类方法。
最小错误概率贝叶斯分类器 把代表模式的特征向量x分到c个类别(ω1,ω2,...,ωc)中某一类的最基本方法是计算在 x的条件下,该模式属于各类的概率,用符号P(ω1|x),P(ω2|x),...,P(ωc|x)表示。比较这些条件概率,最大数值所对应的类别ωi就是该模式所属的类。例如表示某个待查细胞的特征向量 x属于正常细胞类的概率是0.2,属于癌变细胞类的概率是0.8,就把它归类为癌变细胞。上述定义的条件概率也称为后验概率,在特征向量为一维的情况下,一般有图中的变化关系。当 x=x*时,P(ω1|x)=P(ω2|x)对于 x>x*的区域,由于P(ω2|x)>P(ω1|x)因此x属ω2类,对于x*的区域,由于P(ω1|x)>P(ω2|x),x属ω1类,x*就相当于区域的分界点。图中的阴影面积就反映了这种方法的错误分类概率,对于以任何其他的 x值作为区域分界点的分类方法都对应一个更大的阴影面积,因此贝叶斯分类器是一种最小错误概率的分类器
一般情况下,不能直接得到后验概率而是要通过贝叶斯公式
进行计算。式中的P(x│ωi)为在模式属于ωi类的条件下出现x的概率密度,称为x的类条件概率密度;P(ωi)为在所研究的识别问题中出现ωi类的概率,又称先验概率;P(x)是特征向量x的概率密度。分类器在比较后验概率时,对于确定的输入x,P(x)是常数,因此在实际应用中,通常不是直接用后验概率作为分类器的判决函数gi(x)(见线性判别函数)而采用下面两种形式:
对所有的c个类计算gi(x)(i=1,2,...,c)。与gi(x)中最大值相对应的类别就是x的所属类别。
最小风险贝叶斯分类器 由于客观事物的复杂性,分类器作出各种判决时的风险是不一样的。例如将癌细胞误判为正常细胞的风险就比将正常细胞误判为癌细胞的风险大。因此,在贝叶斯分类器中引入了风险的概念。在实际应用中根据具体情况决定各种风险的大小,通常用一组系数Cij来表示。Cij表示分类器将被识别样本分类为ωi,而该样本的真正类别为ωj时的风险。设计最小风险分类器的基本思想是用后验概率计算将 x分类为ωi的条件风险
比较各Ri(x)的大小,与最小值对应的类别是分类的结果。评价这种分类器的标准是平均风险,它的平均风险最小。在实际应用时,后验概率是难以获得的,根据模式类别的多少和Cij的取值方式,可设计出各种分类器,例如模式为两类时,判别函数为
如果选择C11和C22为零,C12和C21为1,它就是两类最小错误概率分类器。实际上,最小错误概率分类器是最小风险分类器的一种特殊情况。
设计贝叶斯分类器的关键是要知道样本特征 x的各种概率密度函数。条件概率密度函数为多元正态分布是研究得最多的分布。这是由于它的数学表达式易于分析,在实际应用中也是一种常见的分布形式。经常使用参数方法来设计正态分布的判别函数。
参考书目
福永圭之介著,陶笃纯译:《统计图形识别导论》,科学出版社,北京,1978。
最小错误概率贝叶斯分类器 把代表模式的特征向量x分到c个类别(ω1,ω2,...,ωc)中某一类的最基本方法是计算在 x的条件下,该模式属于各类的概率,用符号P(ω1|x),P(ω2|x),...,P(ωc|x)表示。比较这些条件概率,最大数值所对应的类别ωi就是该模式所属的类。例如表示某个待查细胞的特征向量 x属于正常细胞类的概率是0.2,属于癌变细胞类的概率是0.8,就把它归类为癌变细胞。上述定义的条件概率也称为后验概率,在特征向量为一维的情况下,一般有图中的变化关系。当 x=x*时,P(ω1|x)=P(ω2|x)对于 x>x*的区域,由于P(ω2|x)>P(ω1|x)因此x属ω2类,对于x
一般情况下,不能直接得到后验概率而是要通过贝叶斯公式
进行计算。式中的P(x│ωi)为在模式属于ωi类的条件下出现x的概率密度,称为x的类条件概率密度;P(ωi)为在所研究的识别问题中出现ωi类的概率,又称先验概率;P(x)是特征向量x的概率密度。分类器在比较后验概率时,对于确定的输入x,P(x)是常数,因此在实际应用中,通常不是直接用后验概率作为分类器的判决函数gi(x)(见线性判别函数)而采用下面两种形式:
对所有的c个类计算gi(x)(i=1,2,...,c)。与gi(x)中最大值相对应的类别就是x的所属类别。
最小风险贝叶斯分类器 由于客观事物的复杂性,分类器作出各种判决时的风险是不一样的。例如将癌细胞误判为正常细胞的风险就比将正常细胞误判为癌细胞的风险大。因此,在贝叶斯分类器中引入了风险的概念。在实际应用中根据具体情况决定各种风险的大小,通常用一组系数Cij来表示。Cij表示分类器将被识别样本分类为ωi,而该样本的真正类别为ωj时的风险。设计最小风险分类器的基本思想是用后验概率计算将 x分类为ωi的条件风险
比较各Ri(x)的大小,与最小值对应的类别是分类的结果。评价这种分类器的标准是平均风险,它的平均风险最小。在实际应用时,后验概率是难以获得的,根据模式类别的多少和Cij的取值方式,可设计出各种分类器,例如模式为两类时,判别函数为
如果选择C11和C22为零,C12和C21为1,它就是两类最小错误概率分类器。实际上,最小错误概率分类器是最小风险分类器的一种特殊情况。
设计贝叶斯分类器的关键是要知道样本特征 x的各种概率密度函数。条件概率密度函数为多元正态分布是研究得最多的分布。这是由于它的数学表达式易于分析,在实际应用中也是一种常见的分布形式。经常使用参数方法来设计正态分布的判别函数。
参考书目
福永圭之介著,陶笃纯译:《统计图形识别导论》,科学出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条