1) very complicated state function
高度复杂状态函数
2) Function complexity
函数复杂度
3) complex functions with high-dimension
高维复杂函数
1.
Traditional optimization methods are easy to be trapped in local minima for complex functions with high-dimension.
鉴于传统方法用于高维复杂函数优化很容易陷入局部极小,为此提出了一类通用、易实现、具有全局优化特性的混合优化算法(CHADE算法)。
2.
Using Particle Swarm Optimaziton to handle complex functions with high-dimension has the problems of low convergence speed and sensitivity to local convergence.
针对标准粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了一种改进的粒子群算法——基于混沌变异解决早熟收敛的粒子群算法。
4) complex density function
复杂密度函数
5) complex function
复杂函数
1.
Optimization and iteration of multi-dimension parameters in complex function by computer;
复杂函数中多维参数的计算机优选搜索与累次迭代
2.
This algorithm was used to solve the automatic modeling of the complex functions and then the projects were predicted according to this model.
通过对适应度函数的有效设计以及函数集的有效选取,引入新的常数创建方法,将基因表达式程序设计运用于复杂函数的自动建模中,并把所建立的模型用于预测分析。
3.
In this paper, we apply Genetic Programming to the automatic modeling of complex functions.
采用遗传程序设计的方法实现复杂函数的自动建模,程序中用树的分层结构表示复杂函数,并设计了相应的遗传算子(包括杂交算子和变异算子)以及停机条件。
6) complex functions
复杂函数
1.
Shuffled frog leaping algorithm for solving complex functions
求解复杂函数优化问题的混合蛙跳算法
2.
With strong random,basic Shuffled Frog Leaping Algorithm(SFLA) algorithm easily traps into local optima and has a slow convergence speed when it is used to address complex functions,in order to overcome the shortcomings,an improved SFLA is proposed.
针对基本混合蛙跳算法随机性强,在处理复杂函数优化问题时容易陷入局部最优、收敛速度慢的缺点,提出了一种改进的混合蛙跳算法,该算法利用高斯变异算子对子群最差青蛙进行适当的扰动,修正了其更新策略,从而维持了群体的多样性。
3.
Standard Particle Swarm Optimization(PSO) algorithm falls into local optima easily and has low convergence accuracy when it is used to address the problem of complex functions optimization.
针对标准粒子群优化算法在处理复杂函数优化问题时容易陷入局部最优、收敛精度低的缺点,提出了一种改进的PSO算法,该算法把生物学中的吸引排斥思想引入到PSO算法中,充分利用粒子间的相互影响,修正了其速度更新公式,从而维持了群体的多样性,增强了粒子跳出局部最优解的能力。
补充资料:状态函数
分子式:
CAS号:
性质:也称热力学函数(thermody-namic function)。热力学系统的状态是用它的一组宏观性质来描述的。用于描述系统的任一种性质发生变化,系统的状态就发生变化,系统的其他有些性质也要随之变化。因而系统的这些宏观性质是系统状态的函数,而且是单值函数,即状态确定之后,每一性质只可能有惟一确定的值。因此,这些性质(如温度、体积、内能和熵等)称为状态函数。状态函数在热力学过程中的改变值只与始态和终态有关,与系统变化所沿的途径无关,用数学式表示,对状态函数 ,其中△X为X值的增加,Xl及X2分别为始态及终态的X值。
CAS号:
性质:也称热力学函数(thermody-namic function)。热力学系统的状态是用它的一组宏观性质来描述的。用于描述系统的任一种性质发生变化,系统的状态就发生变化,系统的其他有些性质也要随之变化。因而系统的这些宏观性质是系统状态的函数,而且是单值函数,即状态确定之后,每一性质只可能有惟一确定的值。因此,这些性质(如温度、体积、内能和熵等)称为状态函数。状态函数在热力学过程中的改变值只与始态和终态有关,与系统变化所沿的途径无关,用数学式表示,对状态函数 ,其中△X为X值的增加,Xl及X2分别为始态及终态的X值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条