说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微分几何方法
1)  differential geometric method
微分几何方法
1.
The differential geometric method has been applied to a series of power system non-linear control problems effectively.
微分几何方法有效地解决了一系列的电力系统非线性控制问题,但因需要确定非线性变换,故必求解微分方程组,所以其求解控制律的过程比较繁琐。
2.
The decoupling problem for a class of nonlinear MIMO time-delay systems is studied with differential geometric method.
利用微分几何方法研究了一类非线性多输入多输出时滞系统的解耦问题。
2)  differential geometry method
微分几何方法
1.
In order to eliminate the non-linearity of the model, the differential geometry method based on coordinate transformation and state feedback was introduced.
为消去模型中的非线性,引入基于坐标变换和状态反馈的微分几何方法
3)  differential geometry approach
微分几何方法
1.
An improved coordinate transform is proposed and then the differential geometry approach can be directly used to obtain the nonlinear control strategy of SSSC.
提出了一种改进的坐标变换,使得微分几何方法可直接应用于求解静止同步串联补偿器(SSSC)非线性控制策略。
4)  differential geometry
微分几何法
1.
With the combination of differential geometry and variable structure control,a new nonlinear control algorithm is proposed,in which the nonlinear feedback of the system is linearized through differential geometry and the control strategy is designed with mature sliding mode variable structure contro.
为此,将微分几何与变结构控制相结合,提出了一种新型的非线性控制算法,即通过微分几何法将系统非线性反馈线性化,再用成熟的滑模变结构控制理论设计控制策略。
5)  differential geometric method
微分几何法
1.
Two feedback linearization methods differential geometric method and inverse system method are presented.
介绍了基于坐标变换和反馈控制理论的 2种反馈线性化方法 ,即微分几何法、逆系统法 ,提出无论在单变量还是在多变量仿射非线性系统中 ,微分几何法与逆系统法是一致的 ,逆系统法更直接 ,更适合于工程应用。
6)  hypergeometric polynomial
超几何微分方程
1.
We also proved that the problem of solving BAE can be transformed into the problem of finding the roots of a hypergeometric polynomial,which was much simpler.
在具体求解过程中,利用超几何微分方程十分有效地简化了计算。
补充资料:Nash定理(微分几何学中的)


Nash定理(微分几何学中的)
ial geometry) Nash theorems (in differen-

N目l定理(微分几何学中的)〔N山由由印泊1拐(in山筋改价回g印艘甸);比二a TeopeM“1 R记叮ul扣流形在E侧土d空间中等距嵌人(如饮沮-d云19)和等距浸人(一ion)的两组定理(亦见流形的浸入(肛田犯邝ion of a Inanifokl);等距浸入(isonletric~ion)).最初的叙述是J.Nash给出的(〔l」). l)关于Cl嵌人和Cl浸人的Nash定理.具有C”类度量g的n维R~空间(R吮nannjan印ace)砂在m维EuCljd空间E门中的Cl类浸入(嵌人)f:俨~E“称为短的(sllort),如果它在俨上诱导的度量g,使得二次型g一外是正定的·若砂有在E附(m)n+l)中的短浸人(嵌人),则尸也有在Em中的C,类等距浸人(嵌人).在m)”+2的限制下,该定理在【l]中被证明,如上所述形式的定理由【2]证明.特别是,这个定理蕴含着:若紧R犯犷naon流形俨有在E“(m)n十l)中的C,嵌人(浸人),则俨也有在E们中的等距c]嵌人(浸人).N出h定理的另一个结论是:Vn的每一个点有一个充分小的邻域,它容许有在En十‘中的Cl类等距嵌人. 2)关于正则嵌人的N出h定理.每一个紧c尸类Rlerr以nn流形(3簇r提二)有在E“中的等距Cr类嵌入,其中m=(3矛+11n)/2若砂不是紧的,则它有在E们’中的等距cr类嵌人,此处阴1=(3记+1 In)(n+l)/2. 关于正则嵌人的N留h定理来自关于很广的一类微分算子的逆算子的N比h隐函数定理(N出h加P五cit一腼·面nth印况m)的一个应用.该定理的意思是,当自然地联系于微分算子L的某个线性代数方程组可解时,且在象和逆象中引进合适的拓扑,则所讨论的算子是开映射,即L在其范围内任意一点附近是局部可逆的.对于Ri已比口nn流形在Eu山d空间中嵌人的方程,它归结为:映射f:V”~E爪关于V”的内在坐标的一阶导数和二阶导数必须是线性无关的.这样的嵌人首先是在〔41中考虑的‘它们被称为亨申的〔脉).N出h隐函数定理意味着与自由嵌人在Em中的R止Ir以nn流形户充分接近的紧凡e皿nn流形V”也有在E,中的自由嵌人.这个事实以及关于一个参数的初始延拓方法导至关于正则嵌人的N由h定理(见「3】).将Nasb方法推广到非紧流形和解析嵌人,并且将关于一个参数的延拓过程作重要的加细,已经证明每一个无限次可微(解析)的R正n坦口n流形砂有在E爪中等距的可微(解析)嵌入,其中m=。(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条