1) flexural-torsional buckling load
弯扭屈曲荷载
1.
Based on the total potential energy of elastic curved beams by considering the geometrical nonlinearity, the theoretic solution for the flexural-torsional buckling load of fixed-end circular arches subjected to uniform compression and bending is deduced with the Retz method, taking the effects of warping rigidity into account.
在给出的考虑几何非线性情况下的弹性曲梁总势能的基础上,采用里兹法导出了固支圆弧拱在均匀受压和均匀受弯作用下的弯扭屈曲荷载的理论解,推导中考虑了翘曲刚度的影响。
2) critical load/torsional-flexural buckling
临界荷载/弯扭屈曲
3) elastoplastic bent and torsional buckling load
弹塑性弯扭屈曲荷载
4) lateral-torsional buckling resistance
弯扭屈曲承载力
1.
Based on the latest experimental study abroad, lateral-torsional buckling resistance of coped beams has been analyzed in this .
由于几何,材料非线性,初始几何缺陷及切口参数等因素,使得切口梁弯扭屈曲承载力的确定比较复杂。
5) flexural-torsional buckling
弯扭屈曲
1.
Wagner effect in flexural-torsional buckling of open-profile thin-walled columns;
开口薄壁柱弯扭屈曲时的Wagner效应问题研究
2.
The flexural-torsional buckling of thin-wall open compression members with twin axes eccentrically connecting with multiple elastic supports is studied.
研究了有双轴对称截面开口薄壁压杆与多个弹性支承偏心连接时的弯扭屈曲,把作用在开口薄壁压杆上的弹性支承去掉,代之以相应的未知外力和未知扭矩,采用Laplace变换推导出了开口薄壁压杆弯扭屈曲的位移函数,求得了其弯扭屈曲的特征方程。
3.
Based on the theory of nonlinear finite element of plate and shell,a finite element method of elasto-plastic flexural-torsional buckling of steel members under cyclic loading was presented,and a nonlinear analysis program was complied.
根据板壳非线性有限元基本理论 ,提出了压弯钢构件在循环荷载作用下弹塑性弯扭屈曲分析的有限单元法 ,并编制了计算程序 ,通过将计算结果和其他分析比较 ,对本文的理论进行了验证。
6) buckling load
屈曲载荷
1.
The analysis of buckling load of the horizontal drill stem;
水平钻柱屈曲载荷的分析计算
2.
A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented.
提出了求解具有不确定性复合材料层合板屈曲载荷的一种处理方法———区间分析法。
3.
Finally, analytic method in this paper is validated by comparing the buckling load calculated with those in lite.
最后通过将含表面脱层的各向同性和各向异性板的屈曲载荷与其它文献进行比较 ,验证了该文分析方法的正确性 ,并分析了含内埋圆形或椭圆形脱层的各向同性、正交各向异性和角铺层层合板各种参数对屈曲载荷的影响 。
补充资料:弯扭系数
分子式:
CAS号:
性质:又称曲折因子。气体、蒸气分子对薄膜的透过是单分子扩散过程。其大体过程是溶解于固体薄膜中,向低浓度处扩散,在薄膜另一侧蒸发。透过能力的大小由这三个过程中的因素决定,在扩散阶段,就和薄膜的分子结构、极性、气体的种类等等有关。弯扭系数就是给出这些因素的综合的数字式评价。它的物理意义是分子穿经薄膜必须的运动距离除以薄膜厚度所得之商值。
CAS号:
性质:又称曲折因子。气体、蒸气分子对薄膜的透过是单分子扩散过程。其大体过程是溶解于固体薄膜中,向低浓度处扩散,在薄膜另一侧蒸发。透过能力的大小由这三个过程中的因素决定,在扩散阶段,就和薄膜的分子结构、极性、气体的种类等等有关。弯扭系数就是给出这些因素的综合的数字式评价。它的物理意义是分子穿经薄膜必须的运动距离除以薄膜厚度所得之商值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条