1) Peano-Baker series
Peano-Baker级数
1.
Peano-Baker series solution was obtained for the elastic fields of the functionally graded plate subjected to mechanical loads on its upper and lower surfaces by means of state space method.
假设材料参数沿板厚方向按同一函数规律变化,基于状态空间法,在板的上下表面作用机械荷载的情况下,获得了功能梯度平板柱形弯曲问题的Peano-Baker级数解。
2.
This paper solved the difficult problem with the theory of Peano-Baker series:first, to get the precise transfer matrix in a single period, then to simplify the computation with the periodicity.
应用Peano-Baker级数理论:首先在单周期内获得精细转移矩阵,然后利用周期性简化计算,这不仅有效地提高了全时域上的计算精度,而且还能节省较多计算量。
3.
From the basic equations of thermoelasticity,assuming that material properties have the same variations along the plate-thickness direction,Peano-Baker series solution is obtained for the thermoelastic fields of the functionally graded plate subjected to mechanical and thermal loads on its upper and lo.
从热弹性力学的基本方程出发,假设材料参数沿板厚方向(z方向)按同一函数规律变化,基于状态空间法,在板的上下表面作用机械荷载和热荷载的情况下,获得了功能梯度平板二维热弹性问题的Peano-Baker级数解。
2) Baker constant
Baker常数
3) Peano derivative
Peano导数
4) peano axiom system
Peano自然数公理
1.
Discussions are conducted on the course based on the peano axiom system of natural numbers.
对于以Peano自然数公理系统为基础的《数系理论》课程 ,本文对于在新自然数体系下如何建立与之相应的自然数公理系统及其有关性质进行了比较全面的讨论 ,并在教学上作出了一些有益的探索。
5) generalized second-order Peano(Dini) direction derivative
广义二阶Peano(Dini)方向导数
6) Peano kernel
Peano核
补充资料:Peano导数
Peano导数
Peano derivative
1七.1”导数【P.no deriv a6ve;fleaHO IlpoH3BO职翻1 导数(deri珑吐ive)概念的一种推广.假设存在一个正数吞>O,使得 仪 ]吸戈”十「)一“(,一卜“,「十”’十万不十狱正)「对一叨满足!t}<占的门戊立,其中钧,,一,二,为常数,而当卜,O时,下(r)、仇又设?(0)=0.那么:。称为函数、f在点戈,的r阶广义P口加导数(罗::emli双刘Peano deri论tive),i己为f,:)(x。)=“;:特别.,,,二j怀,,),:,=f〔!,(义.,)·若j飞r)(x。)存在,r)I,那么人;一,。(凡,)也存在.若通常的双边导数了“)(二t,)存在且有限,则.人,,(二、,)二f〔”(x。).当/>l时,其逆不真,例如函数 f。一’尸,义笋。且为有理数, /(、)=哎 to,戈二O或无理数,于是几探0)二o,r二l,2,…,但当x护o时,人1)(x)不存在(因/(x)在,笋o处是不连续的).所以通常导数.户,,(0)当r>1时不存在. 无穷的广‘义Peano导数也可以定义.假设j(x‘十:)一,+·,。、二十兴r·对一切满足}。}<石的t均成立,其中气、,‘’,仪;一l为常数、而当t,0时,比:(t),:厂(仪;是数或符号叨),那么。;也称为函数厂在点气,处的r阶压、no导数.它由G.POulo引人.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条