1) impulse coupling coefficient
冲量耦合系数
1.
Influence of air pressure on impulse coupling coefficient of laser thruster;
空气压强对激光推进器冲量耦合系数影响
2.
The research on the impulse coupling coefficient in laser ablation;
激光烧蚀过程中冲量耦合系数的研究
3.
Effects of single pulse energy on impulse coupling coefficient in air-breathing laser propulsion
单脉冲能量对吸气式激光推进冲量耦合系数的影响
2) Momentum coupling coefficient
冲量耦合系数
1.
The results indicated that the momentum coupling coefficient (C_m) had no obvious change when the pulse energy decreased from 80 J to 24 J.
实验通过采用最大输出脉冲能量为100J的TEACO2激光器,研究了从13~80J的激光脉冲能量对大气呼吸模式激光推进冲量耦合系数的影响。
2.
The mechanism of air-breathing mode has been analyzed systematically and the analytic formulas for the momentum coupling coefficients based on point explosion theory have been derived and improved by considering the restraint of the reflector.
就大气呼吸模式的推进机理作了较为系统的分析和研究,导出了考虑反射面几何约束的冲量及冲量耦合系数的近似解析表达式。
3.
To study the effect of transversely excited atmospheric(TEA) CO_2 laser pulse waveform on the momentum coupling coefficient,the waveform of laser pulse was changed,and the pulse duration was compressed about to 50% by controlling the pressure of the gas and proportion of components in gas mixture.
为了研究TEA CO2激光输出的脉冲波形对激光推进中冲量耦合系数的影响,通过激光技术手段,改变激光混合气体比例及压强,控制激光器脉冲输出波形,将激光的脉冲宽度压缩近50%。
3) impulse coupling
冲量耦合
1.
Mechanism and numerical simulation of laser-target impulse coupling in vacuum;
真空环境下激光与固体靶冲量耦合的机理分析和数值模拟
2.
Moreover, impulse coupling coefficients from pulsed with different energy to HgCdTe with different area were calculated by usi.
06μm,脉宽为10ns)辐照大气中不同面积的HgCdTe样品时的冲量耦合系数。
4) momentum-coupling coefficient
动量耦合系数
1.
Effects of target configuration on the laser plasma momentum-coupling coefficient;
靶结构对激光等离子体动量耦合系数的影响
5) energy coupling coefficient
能量耦合系数
1.
In the domain of laser-matter interaction, energy coupling coefficient is defined as the ratio of absorbed laser energy to incident laser energy.
在激光与物质相互作用研究领域中,能量耦合系数定义为材料吸收的激光能量与入射总激光能量之比值,它是表征激光辐照效应的主要参数。
6) mass coupling coefficient
质量耦合系数
补充资料:横向机电耦合系数
分子式:
CAS号:
性质:表示横向长度伸缩振子振动时机械能与电能之间相互转换的能力,通常用K31表示。当振子的带宽Δf=fa-fr(式中,fa为并联谐振频率;fr为串联谐振频率)较小时,可用下式近似求得:。也可从平面耦合系数Kp换算而得:(式中,σE为泊松比)。它可作为大致判定该压电材料用于制造横向长度伸缩振子振动器件时是否适用。
CAS号:
性质:表示横向长度伸缩振子振动时机械能与电能之间相互转换的能力,通常用K31表示。当振子的带宽Δf=fa-fr(式中,fa为并联谐振频率;fr为串联谐振频率)较小时,可用下式近似求得:。也可从平面耦合系数Kp换算而得:(式中,σE为泊松比)。它可作为大致判定该压电材料用于制造横向长度伸缩振子振动器件时是否适用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条