说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 稳态概率分布
1)  stationary probability distribution
稳态概率分布
2)  stationary probabilitydistribution
平稳概率分布
3)  dynamic probability distribution
概率动态分布
1.
Compared with the methods used in previous course-selection systems,one kind of course-selection algorithms is proposed based on dynamic probability distribution which can be more open,equitable,reasonable for most of the students.
本文在综合考虑以往选课系统中主要应用的算法基础上,提出了一种对于选课学生来说相对公开、公平、公正合理的选课算法———基于概率动态分布选课算法。
2.
Based on the methods used in othercourse-selection systems, one kind of course-selection algorithm on thebase of dynamic probability distribution, which can be more open, moreequitable, more rational for most of the studen.
本文在综合考虑以往的选课系统中主要应用的算法的基础上,提出了一种对于选课学生来说相对公开、公平、公正合理的选课算法——基于概率动态分布选课算法。
4)  normal probability distribution
正态概率分布
5)  Normal P-P
正态概率分布图
6)  steady-state probability
稳态概率
1.
By using the Quasi-Birth-Death process and the matrix geometric solution,we obtain the equilibrium conditions of the system and the steady-state probability distribution.
利用拟生灭过程与矩阵几何解的方法求出了系统的稳态平衡条件和稳态概率分布
2.
First,the steady-state probability equations are obtained by Markov process method.
首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组。
3.
First,the matrix form solution of steady-state probability was derived by the Markfov process method and the matrix solution method.
利用马尔科夫过程理论和矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的平均损失率等性能指标。
补充资料:分布(概率)


分布(概率)
Distribution (probability)

分布(概率)[distributioin(probabi-lity)〕 一系列独立试验的结果、一些随机变量或误差,经常出现在一些相当正规并可预测的模型中。这些模型可以用数学方法表达出来,其中最重要的称为二项分布、正态分布和泊松分布。 二项分布考虑n次独立试验,每一次试验的结果或者是成功S,或者是失败F,其相应的概率分别为P和q一1一P。以S。表示成功的次数。因为共有(艾)种可能的方法来选择;处成功和,一;处失败,所以随机变量S。的概率分布由p‘S。一‘卜{艾)户,、一给出.这里k二。,1,一,n。这就是二项分布,它的数学期望为np.方差为n闪。参阅“概率论”(probability)条。 如果按照第k次试验是成功还是失败来令随机变量X。等于1或。,那么S。二XI+…十X。。因此.根据中心极限定理,此二项分布可以用正态分布来通近。这个特别的情形称为棣美弗一拉普拉斯定理,设 二,一(*一,户)(,:户。)一告定理断言,当n~Qo时,在一个趋于o的百分误差之内,我们有 P{S,二k}一(2万)一“Zexp(一二是/2), P{a0,25%的场合有S。>o。67n,/2,大约在16%的场合中5。>Znl/,,等等。中心极限定理并不是说,在一次这样的游戏中,和数S,,52,…中大约有一半是正的。事实上,反正弦定律表明,其相反的情形是真的:即所有S,>0比正负各半的情况更可能。 多元正态分布上面的理论可以不作本质的改变推广到。维的情形。。维正态密度定义为(2二)一袱Dl/se一Q(了1一,,/2,这里Q是一个以D为行列式的正定二次型,其协方差矩阵是Q的矩阵的逆。如果随机变量X;,…,X。的n维联合分布是正态的,那么每一个X,也是正态的。但其逆不真,这一点在教科书中都可以找到。多元正态分布对平稳随机过程是很重要的。参阅“随机过程”(stoehastie process)条。 泊松分布参数为入的泊松分布是一个以概率_,几去_.,__、…_、,.尸。一尸前取值走‘走一。,‘,“,’‘”的概率分布·其数学期望与方差都等于又。这是最重要的分布之一,它在随机过程的理论和许多应用中起着基本的作用。对它的性状的充分理解可以从它原始的出处和考虑它的许多推广中得到。然而,有很多可以由下面的从二项分布出发的初等阐述中得到。 考虑n次独立试验,n是一个大数,每一次试验的结果,或者是成功,或者是失败,概率分别为P与q一1一P。通常只感兴趣于P很小、但成功的平均数nP一凡却具有中等程度大小的情形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条