1) two-end truncated probability distribution
两端截尾概率分布
1.
Therefore,a stress-strength interference model for the reliability calculation of rock mass under two-end truncated probability distribution was proposed with the help of distribution theories.
为此,借助理论分布,提出了两端截尾概率分布下围岩可靠度计算的应力—强度干涉模型。
2) two end truncated distribution
两端截尾分布
1.
Based on theoretical distribution and engineering practice,variables adopt two end truncated distribution in design of mechanical component,compared to common theoretical distribution,this methods is more reliable and reasonable.
借助理论分布,结合工程实际,在机械零件的可靠性设计中,对其设计变量进行两端截尾,即采用两端截尾分布,经实例计算,并与一般理论分布设计作比较,使设计结果更趋可靠、合理。
3) truncated probabilistic distribution
截尾概率分布
1.
Based on probabilistic distribution theory,an analytical model for truncated probabilistic distribution is presented.
基于概率分布理论,建立了截尾概率分布分析模型;为便于截尾概率分布可靠性分析,提出了计算可靠指标的新优化模型,该模型无需对概率分布进行当量正态化,也无需知道概率分布类型信息;给出了截尾概率分布在给定子区间内产生随机数的方法,使得MonteCarlo抽样成为可能。
4) probability distribution of tail
尾部概率分布
5) truncated distribution
截尾分布
1.
Because the normal distribution is not fit for the practical design,the truncated distribution has been presented to solve this problem,the reliability index under truncated distribution has also been calculated.
对工程中大量存在的截尾分布与计算中使用的理论分布不同问题作了详细的研究,计算了在变量服从截尾正态分布时的可靠性指标的计算,并给出了如何确定实际工程中的截尾点的方法。
2.
Based on stress life model and distribution theory, the stress life model of truncated distribution was set up.
根据应力 寿命模型和截尾分布理论 ,建立了截尾分布的应力 寿命模型 ,对工程上常用的金属材料疲劳寿命多服从对数正态分布这一事实 ,工作应力服从对数正态分布的情况下 ,推导出疲劳可靠度计算公式·对工作应力服从其它分布的情况也可以利用本文给出的方法推导出·所建模型消除了疲劳可靠性计算的系统误差 ,使结果更符合实际情况·通过实例计算表明 ,给出的计算方法是可行
6) cutting-off-tail distribution
截尾分布
1.
In the paper, on the basis of theoretical distributions, the theory of cutting-off-tail distribution at two ends is deduced, in which the stress is fuzzy variable and the strength is random one.
针对应用传统设计方法设计短时、长间隔的特种机器人常会导致机器人非常笨重的缺陷,推导了应力为模糊变量、强度为随机变量组合时的两端截尾分布下的模糊可靠性计算方法,并在排爆机器人设计中进行了应用。
2.
This paper introduces a theory of cutting-off-tail distribution at two ends on the basis of theoretical distributions, in which the stress is a fuzzy variable and the strength is random one.
推导了应力为模糊变量、强度为随机变量的组合时,两端截尾分布下的模糊可靠性计算方法,并应用于排爆机器人设计中。
补充资料:模棱两端
1.见"模棱两可"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条