说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单位圆盘
1)  unit disk
单位圆盘
1.
The third part of this paper proved space ap,q,αψ is also self-conjugate on Cn,and then prove it in the same way as to prove it on the unit disk.
Axler猜想当0单位圆盘D及有界对称域Cn下加权空间也为自共轭空间ap,q,α也为自共轭空间。
2.
We establish some new properties on the unit disk by the definition of two reproducing kernel fuctions.
在再生核理论的基础上,针对特殊的再生核——解析Bergman核与调和Bergman核,分别借助两种再生核的定义讨论它们在单位圆盘上所具有的一些性质,为进一步研究这两种再生核在单位球上的性质提供理论基础。
3.
In this paper, the theoretical properties of some function spaces in the unit disk are studied.
本文主要研究了单位圆盘上一些函数空间的分析性质,主要是以下两个方面,这些结果均推广了已知的结论。
2)  the unit ball
单位圆盘
1.
In this paper,we study the convergence of Hilbert-valued Dμ,q function on the unit ball by Rademacher function system and get the Lipschitz condition of Hilbert-valued Dμ,q function,iff(z)=sum from n=1 to ∞ xnzn ∈ Dμ,q,q > (2n)/μ ,we get φ(z)=sum from α≥0 to ∞ ⅡxαⅡzα ∈Lipγ,where 0<μ<1 if n=1 or 0<μ<2 if n>1.
主要研究了单位圆盘上Hilbert值Dμ,q函数,得到了Hilbert值Dμ,q函数的Lipschitz条件,若f(z)=sum from n=1 to ∞ xnzn∈Dμ,q,0<μ<1,q>(2n)/μ,则有φ(z)=sum from n=1 to ∞ⅡxnⅡzn∈Lipγ。
2.
In this paper,we study the convergence of l~2-valued D_(μ,q) function on the unit ball by Rademacher function system and get the convergence of l~2-valued D_(μ,q) function,if f(z)=sum from∞to n=1 x_nz~n∈D_(μ,q) q>(2n)/μ,we get f_ω(z)∈H~∞for almost every {ε_α},where 0<μ<1.
主要研究了单位圆盘上l~2值D_(μ,q)函数,得到了l~2值D_(μ,q)函数的收敛性,若f(z)=sum from n=1 to∞x_nz~n∈D_(μ,q),0<μ<1,q>(2n)/μ,则对几乎所有的{ε_α}有f_ω(z)∈H~∞。
3)  Unit disk graphs
单位圆盘图
4)  Disk position
圆盘位置
5)  single disk rotor
单圆盘转子
1.
The instability onset threshold of single disk rotor,supported by hydrodynamic lubrication bearing,immerged in large gap annular flow is studied.
分析了大间隙环流中弹支单圆盘转子系统的失稳阈 。
2.
Described in this paper is a calculation formula for a single disk rotor system vibration response.
本文介绍了单圆盘转子体系振动响应的计算公式。
6)  single-row disc-harrow
单列圆盘耙
补充资料:多圆盘


多圆盘
polydisc

多圆盘t州y此c;no月,即yr」,多圆柱(polycy如der) 复空问C月(n)l)中的一区域 △二△(a=(a,,…,a。),厂二(r,,…,r。))= ={:=(:,,…,:。)〔C”:!:一“,】<;,, ,=l,…,n},它是,;个圆盘的拓扑积 △二△lx…x△。, △,={:,苦C“}“,一a,J0,V二1,…,。,是它的多半径(polyradius).当a二0,r=(l,一,1)时可得单位多圆盘(画t卯bdjsc).△的特异边界(distj奥卿shedbouJld盯y)是集合 T=T(“,:)= =毛:任C”:}:,一a,】=r,,,=l,二,n},它是完全拓扑边界刁△的一部分.多圆盘是一完全R凶曲翻rd七区域(Reinhardt doln姐n). 多圆盘概念的一个自然拓广是一多区域(polyre-脚n)(多圆型区域(polvcirc吐场r regon),广义多圆柱(general止ed加lycyl角der))D=D,x…x刀。,它是(一般为多连通的)区域D、.CC(v二1,二,n)的拓扑积.多区域D的边界r二刁D由n个Zn一I维的集合组成二 r、一{:‘C”::,‘口D,,:,“D,,拜笋v}, v=1,…,n.它的公共部分是D的。维特异边界(distin助shedboux〕dary): T=日D一x·‘’x刁D。二 二{:〔C”::,任刁D,,?二1,…,n}. E.八.C叨咖eHuea撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条