1) circular inclusion
圆形夹杂
1.
A scheme of BEM for the simulation of elastic bodies with randomly distributed identical circular inclusions is presented.
在作者研究组能模拟含随机分布圆孔弹性体的二维边界元软件 THBEM2的基础上 ,提出了模拟含随机分布圆形夹杂弹性体的边界元法 ,其计算量和相应圆孔的情况相差并不很大 ,给出的算例表明了方法的可行性和有效
2.
Elastic interaction between a wedge disclination dipole and a circular inclusion with an interfacial crack is investigated by using the methods of conformal mapping,analytic continuation and Cauchy integral.
运用共形映照、解析延拓以及柯西型积分运算等复变函数方法研究无限大平面中楔型向错偶极子与界面裂纹、圆形夹杂的弹性干涉问题。
3.
The interaction among a screw dislocation, circular inclusion and interface crack or elliptical inclusion and interface crack under remote uniform heat flux is mainly researched in this paper.
本文主要研究压电材料在远端均匀热流场作用下,螺型位错分别和圆形夹杂与界面裂纹、椭圆形夹杂与裂纹之间相互作用的问题。
3) circular inclusion
圆柱形夹杂
1.
Scattering of SH waves from a circular inclusion in an infinite strip region
带形域内圆柱形夹杂对SH型导波的散射
4) multiple elliptical rigid inclusion
椭圆形刚性夹杂
1.
A model of composite materials consisting of a continuous matrix with multiple elliptical rigid inclusions was considered.
对于硬夹杂与软基体的复合材料 ,考虑夹杂间的相互影响 ,采用坐标变换和复变函数的依次保角映射方法 ,构造任意分布且相互影响的多个椭圆形刚性夹杂模型的复应力函数 ,同时满足各个夹杂的边界条件 ,利用围线积分将求解方程组化为线性代数方程组 ,推导出了在无穷远作用均匀拉应力 ,椭圆形刚性夹杂任意分布的界面应力表达式。
5) circular rigid inclusions
圆形刚性夹杂
1.
According to the principle of interaction among the inclusions in the composite micro mechanics, complex stress functions that reflect the interaction of multiple circular rigid inclusions randomly distributed in the isotropic martix are constructed by the means of coordinate transformation, then boundary condition of every inclusion is satisfied.
构造任意分布且相互影响的多个圆形刚性夹杂模型的复应力函数 ,采用复变函数方法 ,达到满足各个夹杂的边界条件 ,利用坐标变换和围线积分将求解方程组化为线性代数方程组 ,推导出了圆形刚性夹杂任意分布的界面应力解析表达式 ,算例对多夹杂与单夹杂两种模型的界面应力最大值进行了对比 ,同时还给出了界面应力最大值随夹杂间距的变化规律 ,求出了刚性夹杂的合理间距。
2.
Accordung to the important principle of interatction among the inclusions in the composite micro-mechanics, complex stress functions which reflect the interaction of doubly periodical circular rigid inclusions distributed in the iso tropic matrix, were constructed by the means of coordinate transformation.
研究含双周期分布的圆形刚性夹杂在无穷远受纵向剪切的弹性平面问题,遵循复合材料中各夹杂相互影响的重要条件,采用复变函数方法,构造相应模型的复应力函数,通过坐标变换,同时满足夹杂边界位移条件,再利用围线积分将求解方程组化为线性代数方程组,导出了圆形刚性夹杂双周期分布的界面应力解析表达式,算例给出了界面应力最大值与夹杂间距的变化规律,求出了刚性夹杂的合理间距问题。
6) inclusion with annular cross-section
圆环形截面夹杂
补充资料:GCr15钢中的大型非金属夹杂物(铝酸盐)×500
GCr15钢中的大型非金属夹杂物(铝酸盐)×500
GCrl5钢中的大型非金属夹杂物(铝酸盐) ×500
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条