1) dynamic stability
动力稳定
1.
Nonlinear dynamic stability analysis of point-supported single layer latticed intersected cylindrical shell structures;
点支承两向叉筒单层网壳结构非线性动力稳定分析
2.
Analysis on the dynamic stability of suspen-dome;
弦支穹顶结构在地震作用下的动力稳定性研究
3.
Complete-process nonlinear analysis for dynamic stability of cylindrical orthogonal single-layer lattice shell structures;
单层柱面正交异型网壳的非线性动力稳定全过程分析
2) dynamic stability
动力稳定性
1.
Semi-analytical solution of the dynamic stability of serial system of laminated rubber bearing with column;
橡胶支座与柱串联系统的动力稳定性分析的半解析解法
2.
Analysis of dynamic stability of saturated loess slopes;
饱和黄土边坡的动力稳定性分析
3.
Research on vibration testing of models for dynamic stability of rock slope with layered structures;
层状结构岩质边坡动力稳定性试验研究
3) dynamical stability
动力稳定性
1.
Analyses on the dynamical stability of the coupling control system for maglev vehicle travelling on a single-span flexible guideway;
磁悬浮车体—单跨弹性轨道耦合控制系统的动力稳定性分析
2.
Based on the analysis of rod under vertical dynamical load,the author studies the dynamical stability and parameters rosonance of rod.
通过杆在竖向动力荷载作用下的分析,研究了杆件的动力稳定性及参数共振,导出了在种支承条件下杆的动力稳定计算公式,供工程设计参考。
3.
In terms of the averaging method, the dynamical stability was analyze.
研究简支的受轴向周期激励的粘弹性柱动力稳定性 ,柱的材料满足分数导数型本构关系· 建立了描述粘弹性柱动力学行为的弱奇异性Volterra积分_偏微分方程 ,利用Galerkin方法将其化归为弱奇异性Volterra积分_常微分方程· 利用平均化方法的思想给出了粘弹性柱运动稳定状态的存在性条件· 给出一种新的计算方法 ,克服了存储整个响应历史数据的困难 ,并给出了数值算例 ,计算结果与解析方法的结论比较吻
4) power stabilizing machine
动力稳定车
1.
Software development of computer control system for WDS320 power stabilizing machine;
WD320动力稳定车计算机控制系统软件开发
5) dynamics and stability
动力与稳定
6) dynamic stability
动力稳定度
补充资料:大气动力不稳定性
大气的各种运动状态,可以看成是基本气流和各种不同尺度的扰动(波动)叠加的结果。叠加在纬向的带状基本气流(ū )上的扰动,有三种可能的变化:①随时间而增强(发展),按气象界的习惯,称为不稳定;②基本上保持原有的强度,即所谓稳定或中性;③随时间而衰减,即所谓阻尼。通常,称波的不稳定性为动力不稳定。扰动发展,必须供给能量,根据能源的不同,可将动力不稳定区分为正压不稳定和斜压不稳定两种。
正压不稳定 若视大气为正压大气,则基本气流只能有水平切变。假定基本气流(ū )主要在南北方向有切变,即ū =ū (у),在一定的条件下,这样具有南北切变的纬向气流中扰动可能是不稳定的。因为正压大气不能释放全势能,所以,引起扰动不稳定发展的能量,只能来自其平均动能(见大气能量)。具有这一特征的扰动的不稳定发展,称为正压不稳定。郭晓岚(1949)最早研究了行星波(即长波)的正压不稳定,得到了正压不稳定的必要条件:在流场内至少有一点满足
其中β为罗斯比参数(见大气波动)。这一条件表明,只有在基本气流的流场中绝对涡度(见大气动力方程)有极大值或极小值时,扰动才有可能发展。
斜压不稳定 在斜压大气中,引起动力不稳定的能量,主要来自基本气流的全势能,在扰动发展过程中全势能将转换成扰动的动能。这种扰动的不稳定发展,称为斜压不稳定。最早注意到斜压大气中行星波的动力不稳定的,是中国气象学家赵九章。后来美国科学家J.G.查尼和气象学家E.T.伊迪对斜压不稳定进行了深入的研究,提出了比较符合实际大气情况的斜压不稳定理论。他们的理论结果表明,当行星波的波长大于临界波长时,波动将是不稳定的,而临界波长随着静力稳定程度(见大气静力稳定度)的增加而增加,在中纬度对流层的典型条件下,临界波长约为3000公里。此外,波动的增长率和大气的斜压性有关,斜压性愈强波动增强得愈快。
行星波的斜压不稳定对于了解天气系统的发展有很重要的意义,是近代动力气象学中的一个重大发现。
正压不稳定 若视大气为正压大气,则基本气流只能有水平切变。假定基本气流(ū )主要在南北方向有切变,即ū =ū (у),在一定的条件下,这样具有南北切变的纬向气流中扰动可能是不稳定的。因为正压大气不能释放全势能,所以,引起扰动不稳定发展的能量,只能来自其平均动能(见大气能量)。具有这一特征的扰动的不稳定发展,称为正压不稳定。郭晓岚(1949)最早研究了行星波(即长波)的正压不稳定,得到了正压不稳定的必要条件:在流场内至少有一点满足
其中β为罗斯比参数(见大气波动)。这一条件表明,只有在基本气流的流场中绝对涡度(见大气动力方程)有极大值或极小值时,扰动才有可能发展。
斜压不稳定 在斜压大气中,引起动力不稳定的能量,主要来自基本气流的全势能,在扰动发展过程中全势能将转换成扰动的动能。这种扰动的不稳定发展,称为斜压不稳定。最早注意到斜压大气中行星波的动力不稳定的,是中国气象学家赵九章。后来美国科学家J.G.查尼和气象学家E.T.伊迪对斜压不稳定进行了深入的研究,提出了比较符合实际大气情况的斜压不稳定理论。他们的理论结果表明,当行星波的波长大于临界波长时,波动将是不稳定的,而临界波长随着静力稳定程度(见大气静力稳定度)的增加而增加,在中纬度对流层的典型条件下,临界波长约为3000公里。此外,波动的增长率和大气的斜压性有关,斜压性愈强波动增强得愈快。
行星波的斜压不稳定对于了解天气系统的发展有很重要的意义,是近代动力气象学中的一个重大发现。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条