1) bayesian-regularization
贝叶斯正规化
1.
Application of Bayesian-regularization BP neural network in the prediction of hospital beds;
贝叶斯正规化BP神经网络在我国医院床位预测中的应用
2.
Study the Bayesian-regularization BP Neural Network Model of Bacillary Dysentery
基于贝叶斯正规化BP神经网络模型对菌痢发病的预测研究
2) Bayesian regularization
贝叶斯正规化
1.
Bayesian regularization in combination with Levenberg-Marquardt algorithm has been applied to achieving faster learning speed and well-generalized neural network.
将贝叶斯正规化方法与Levenberg-Marquardt优化算法相结合,提高了神经网络训练的效率和推广能力。
3) Bayesian regularized
贝叶斯规整化
1.
Bayesian regularized BP neural network (BRBPNN)was applied to quantify the impact of biophysical socioeconomy on non-point source (NPS) pollution within Weihe River.
将贝叶斯规整化BP神经网络(BRBPNN)应用于渭河流域非点源污染、社会和经济之间相互作用的研究。
4) Bayesian regularization
贝叶斯正则化
1.
The predictive models using Bayesian regularization neural network and grey model are established for the H+ concentration in the HPO, two kinds of model are compared and associated to establish model and to predict.
以某己内酰胺厂磷酸羟胺(HPO)的制备的现场数据为基础,利用贝叶斯正则化神经网络和灰色模型建立了磷酸羟胺中的H+浓度的预测模型;比较了神经网络和灰色模型的差异,并把两者结合起来,建立模型进行预测。
2.
This paper compares the results by standard BP algorithm with that of Bayesian regularization together with LM algorithm.
比较了标准的BP算法和用贝叶斯正则化与Levenberg-Marquardt算法相结合的改进BP网络训练的结果。
3.
The BPNN model of Bayesian regularization method was adopted to create the adaptivity and generalization of BPNN.
基于混沌退火算法和BPNN模型的末敏弹系统效能参数优化,引入贝叶斯正则化方法的BPNN模型,使神经网络具有自适应性和推广能力。
5) Bayes regularization
贝叶斯正则化
1.
The Bayes regularization method is employed to get a well generalized neural networks, the redundant and irrelevant attributes can be deleted from the prime attributes set by pruning the input node of the networks.
采用贝叶斯正则化方法训练 ,以得到推广性优良的神经网络 ,并提出启发性的遗传算法。
2.
This paper establishes dynamic forward feedback correction model with the method of combining Bayes regularization and BP neural network.
文中采用贝叶斯正则化与BP网络结合的方法,建立动态前馈校正模型。
3.
Based on nonlinear prediction ideas of reconstructing phase space, this paper presents a time delay BP neural network model, whose generalization is improved utilizing Bayes regularization.
基于相空间重构的非线性预报思想,建立一个时滞的BP神经网络模型,采用贝叶斯正则化方法提高BP网络的泛化能力。
6) Bayesian rules
贝叶斯规则
1.
To improve the effectiveness in the supervision of medicinal markets,Bayesian rules,supervision of admission,prisoner s dilemma,anti-fake and maintenance right,obstruction in access to medicinal markets,anti-monopoly and other aspects are analyzed in the paper.
从贝叶斯规则与医药市场准入监管、囚徒困境与打假维权、医药市场进入阻挠与反限制竞争等方面对医药企业的监管进行博弈分析,药品监督管理部门通过理性博弈可以大大提高医药市场监管的有效性。
补充资料:《建设强大的现代化正规化的革命军队》
《建设强大的现代化正规化的革命军队》
Build a Powerful Modernized and Regularized Revolutionary Army
ihllQ:命军,d‘一)才‘l’}二刁、卜鲜内‘乍1在华 全文《邓小 走规许的特}仁战的水、卜.推动旱的和易。,},于卜石,匕’建处的现J ianshe Qiangda de XiandaZhengguihua de Geming!undui《建设强大的现代化正规化的革队))(B“11‘l‘才p‘,、,,。,介,IM‘,‘le‘:,i:‘ReguI’Iri:ed Re、1‘,11才rior了u尽A月7了介)关J:新时期‘引从建设日标和任务问是事著作。是邓小平J几1981年gJ」191北某地检阅军事演习部队时的讲话,约800字,收人1994年川J」{I}版的、卜文选》第2卷。 讲话称赞演习检验厂部队现代化、化建设的成果,较好地体现】’现代战’点,摸索J‘现代条件卜诸军兵种协},叮经验,提高厂部队的军政素质和实,l戊对全军的建设、战备和训练是个有力讲话指出,霸权}:义严币地威胁若世占平和:1,l司的安个,必须保于,’f高度的警才囚人民解放军是人民民i二专政的‘}剐虽启负肴保IJ.社会1己义子11}xJ,保I之“【,LI了设的光荣使命,必须建没成为一支强、响月~‘‘~代化、正规化的革命军队。全定要坚持四项基本原则,加治思想建设;改善武器装备,国防现代化;继承和发扬人队的光荣传统,加强军政训练一步增强部队的军政素质,现代条件下诸军兵种协同作.力;加强作风培养,严格组律,扎扎实实地做好反侵略.的准备。 《建设强大的现代化正规革命军队》为新时期军队建明了方向和目标。 (王长多 一一咋跳J与击勺︻L儿fr盯山日目吞杏尹Z﹂﹂J口仁七托︶旧J写盈匕卜廿凡口汽卜芯的指卜﹄飞兄)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条