说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 重复极限
1)  repetition maximum
重复极限
2)  important limit
重要极限
1.
A problem from an important limit;
由一个重要极限引发的问题
2.
The characteristic of the important limit limn→∞(1+1/n)~n=e is analyzed,and the general solutions to this type of limit is induced.
分析了重要极限limn→∞(1+1/n)n=e的特征,归纳了此类极限的一般性解法。
3.
Hence ,a simple proof of the important limit is also given.
利用泰勒公式给出了函数凹凸性判别的一个简便证明,并由此给出了重要极限的简便证明。
3)  ?regrinding life
重磨极限
4)  double limit
二重极限
1.
The uncertain relationship between the double limit and the quadratic limit is explained and the determination methods to the nonexistence of the odd function’s limit are given.
本文阐明二重极限与二次极限的不确定关系,给出齐次函数的极限不存在的判定方法。
2.
This paper presents the concepts of double limit, repeated limit, directional limit and weak double limit of binary function, and discusses the relationships among them.
给出了二元函数的二重极限、累次极限、方向极限、弱二重极限的概念,讨论了这几种极限之间的关系。
3.
For double limit of a binary function,the existence of the limit and the methods to seek its solution are emphasis among our focus.
对于二元函数的二重极限,重点是极限的存在性及其求解方法。
5)  dual limit
二重极限
1.
From the existence in x_0 of the limit of the function f(x), it is easy to conclude that there is the existence of the dual limit in (x_0,y_0) of the special binary functionF(x,y)=f(x).
由一元函数f(x)在点x0 的极限存在,很容易地得出特殊二元函数F(x,y) =f(x)在点(x0,y0 )的二重极限也存在。
6)  double limit
重极限
1.
We prove it has the strong convergence in the double limit sense.
本文研究计算无限维LQ最优调节器问题之(近似)解的一类方法,我们证得了该方法当其所依赖的两个参数均趋于无穷时按重极限意义的强收敛性。
补充资料:上极限和下极限


上极限和下极限
upper and lower limits

  上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条