说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 胃肿瘤/放射治疗
1)  gastric neoplasms/surgery
胃肿瘤/放射治疗
2)  stomach neoplasms/radiotherapy
胃肿瘤/放射疗法
3)  neoplasms/radiotherapy
肿瘤/放射治疗
4)  lung neoplasms/radiotherapy
肺肿瘤/放射治疗
5)  Liver neoplasms/radiother
肝肿瘤/放射治疗
6)  radiation oncology
肿瘤放射治疗
1.
Two important examples are medical imaging and radiation oncology.
对近年来医学物理学在医学影像和肿瘤放射治疗两个领域中的发展现状与最新进展作了综述 。
补充资料:肿瘤的放射治疗
      应用电离辐射或放射性物质治疗肿瘤的方法。放射线虽然可以治疗良性疾病,但主要用于治疗恶性肿瘤,它与手术治疗及药物治疗组成医治肿瘤的三大手段。各种手段均有其不同的适应症及限制,各种不同的肿瘤以及同一种肿瘤在不同阶段,也需要不同的手段来治疗,约60~70%的恶性肿瘤病人在其病程某一阶段接受过放射治疗。
  
  1895年伦琴发现 X射线。第二年即开始应用放射线治疗恶性肿瘤。放射治疗的设备,已由深部 X射线机转为超高压装置──60Co远距离治疗机、电子直线和电子感应加速器等。肿瘤的放谢治疗按目的可分为根治治疗及姑息治疗。前者是彻底地除去肿瘤。姑息治疗用于不能根治的病人,目的是延长寿命及减轻痛苦。放疗运用于许多系统的肿瘤。恶性淋巴瘤、髓母细胞瘤、鼻咽癌、中晚期子宫颈癌等应放疗为主。早期喉癌以放疗为主,中、晚期放疗与手术合并应用。肺部小细胞未分化癌以化疗为主,合并放射治疗。许多其他肿瘤,则放疗与手术,化疗综合应用。放射治疗(尤其是姑息性治疗)很少绝对禁忌症,恶病质,肿瘤所在器官有穿孔或合并大量积液(如肺癌合并大量胸水)则为禁忌,有急性炎症及心力衰竭者应于控制后方行放疗。白细胞过低或血小板过低(非因肿瘤引起),放疗亦宜慎重。
  
  肿瘤放射治疗的种类 可按照射方法分为二类一为远距离治疗,又称外照射源(通过身体皮肤照射肿瘤)治疗,二为近距离治疗。近距离治疗又分为腔内照射源(通过体腔照肿瘤,如通过阴道照射子宫颈癌)及组织间照射源(即将放射源陷植到肿瘤及周围组织间进行照射)。
  
  ①远距离治疗发展很快。1940年代以深部 X射线治疗机为主,50~60年代以60Co远距离治疗机为主,70年代则以电子直线加速器为主。
  
  深部X射线机所产生的X射线的特点是穿透能力低,皮肤剂量高。在照射深部肿瘤时,肿瘤受照射剂量相对小,皮肤量大,皮肤反应大,目前使用已少,但该机机头小,使用灵活,因此在一些情况下仍在使用。
  
  60Co远距离治疗机产生的γ射线是高能射线,穿透力强。其皮肤量低,皮肤反应小。深部剂量高,因而深部肿瘤受照射量较大。同时骨吸收剂量低,骨损伤机率小以及体积量低。60Co是人工放射性核素,60Co远距离治疗机结构简单,对电源要求低,不需要水冷。维修、刻度及校正简单。缺点是半影大,但可以用消半影器来消除。半衰期短,一般在使用一个阶段后需要换60Co源。60Co源在不停放射,因此给维修及更换60Co源带来一定困难。当前,在工业先进国家已广泛使用电子直线加速器,60Co远距离治疗机为备用设备。但在发展中国家仍应列为基本设备。
  
  电子直线加速器是当前放射治疗的常用设备。一般来说,它可以产生两种射线:电子束及高能X射线。电子直线加速器按其能量可以分为三档。低能电子直线加速器(4~6百万电子伏),一般仅产生4~6百万伏中一个能量的高能X射线,不产生电子束。这种机器体积小,可用来取代60Co远距离治疗机。中能电子直线加速器(8~14百万电子伏),产生 8~14百万伏中一个能量的高能X射线,以及多档次能量的电子束。高能电子直线加速器(18~25百万电子伏),产生 1或2档高能X射线及多档能量的电子束。
  
  高能X射线与60Coγ线一样同属高能射线,它的生物效应与深部X射线、电子束相同。它与60Co产生的γ线相比,随着能量的提高,皮肤量更低,深部剂量更高,因而深部肿瘤量也更高,但射出剂量也随之提高。不利之处是骨吸收量也随之增高。
  
  电子束突出的特点主要表现在剂量分布方面。在生物效应上与高能X射线、60Coγ射线一样同属低"线性能量传递"(LET,在组织内沿着次级粒子径迹单位长度的能量损失较小)。其剂量分布的特点是:剂量由皮肤表面到达预定深度后陡降,这可以保护肿瘤后的组织;可以通过调节电子束的能量来调节照射深度;皮肤量介于深部X射线及60Coγ线之间。所以,皮肤反应比深部X射线小,比60Coγ线及高能X射线大。电子束的剂量到达预定深度陡降的特点,在能量超过25百万电子伏以后逐渐消失,所以电子束适于治疗表浅及偏心肿瘤。如蕈样肉芽肿病(一种原发于皮肤的恶性淋巴瘤)、腮腺癌以及用于乳腺癌术后胸壁照射等等。
  
  电子直线加速器与60Co远距离治疗机相比,价格贵,结构复杂,对水和电源要求高,维持技术要求高。但在停机后没有射线,便于维修。
  
  ②近距离治疗。又分两类:腔内照射和组织间照射。腔内照射源及组织间照射源。过去主要是(226Ra),但226Ra的半衰期太长,且它的第一个子代是氡,氡为气体难以防护。所以作为腔内及组织间照射源的226Ra已被淘汰。现在腔内放射源主要用137Cs、60Co及192Ir。组织间照射源现在主要用192Ir。当前无论是腔内照射还是组织间照射均采用后装技术。即把腔内照射容器或组织间插植的导管先放置好,拍片定位,计算剂量分布;若剂量分布不满意,则可以调整容器或导针的位置,再拍片定位,再计算剂量分布,直到满意以后,再把放射源送入容器或导管开始照射。后装技术的优点是:容器或导管放置部位准确,剂量分布好,而且大大改善了工作人员的防护条件,降低了工作人员的辐射受量。此外组织内照射还用于手术中间置管、术后照射。
  
  当前放射源的研究主要是研究高线性能量传递的射线,它的优点是对氧没有依赖性,放射敏感性与细胞分裂周期的不同时期无关,无亚放死损伤,选择性不强。目前用于临床的主要是快中子治疗。
  
  临床放射剂量学 放射治疗的目的就是使靶区(肿瘤及其周围可能有肿瘤的区域)受到足够且均匀的剂量照射,而周围正常组织受到最小的剂量,就是要根治肿瘤而对周围正常组织不造成损伤。为了达到这个目的,放射治疗广泛使用电子计算机 X射线断层成像(CT)、治疗计划系统(TPS)及模拟定位机。CT的优点是:①准确确定身体轮廓及脏器位置,②准确确定肿瘤范围,③确定敏感器官的位置,④确定照射野中的组织不均匀性,更加准确地计算剂量分布。根据计算机断层所显示的像,通过治疗计划系统可以选择出最佳照射方案。所谓治疗计划系统就是用电子计算机来计算剂量分布,它的优点是计算速度快且可以对组织不均匀性进行校正。为了保证治疗计划系统所选择出的最佳照射方案付诸实现,用模拟定位机加以验证。所谓模拟定位机就是模拟电子直线加速器及60Co远距离治疗机械运动几何参数的X射线诊断机。
  
  肿瘤放射生物学 主要研究肿瘤放射治疗的机制,从而研究提高放射治疗疗效,目前主要研究包括两方面,一是增加肿瘤的放射敏感性,另一方面是研究对正常组织的防护。前者是寻找合适的放射增敏剂,在这方面主要是乏氧细胞增敏剂,如五硝基咪唑,SR-250等等药物。此外尚有物理方法如加温治疗。关于正常组织放射防护剂有WR-2050等等,目前都还在研究中,还没有一个适于临床应用的增敏剂或防护剂。
  
  肿瘤放射治疗的影响因素 主要有以下几个方面:①肿瘤的类型。有的肿瘤对放射线敏感(照射2000~4000rad即可全部消失),如恶性淋巴瘤、神经母细胞瘤、精原细胞瘤、肾母细胞瘤及一些未分化癌。有的对放射线中度敏感(照射量至6000rad方消失),如大部分鳞状细胞癌、分化较差的腺癌(如肺癌、乳腺癌)脑肿瘤等。有的肿瘤对放射抗拒,消灭肿瘤所需放射量接近正常组织器官的耐受量,如胃癌、小肠癌、甲状腺癌、软骨肉瘤、黑素瘤、软组织肉瘤,不适用放射治疗。同一种肿瘤,分化程度越差则对放射线越敏感,即使是放射抗拒的纤维肉瘤,在分化差时也对放射敏感,但分化极差的肿瘤(如肺的小细胞未分化癌、非霍奇金氏淋巴瘤),虽对放射敏感,局部控制容易,但因容易远处转移,治疗效果并不好。对放射中度敏感的子宫颈癌、喉癌放射治疗效果反而较好。②病期。肿瘤处于早期,则局部血液循环好,乏氧细胞少,受照射的正常组织少,控制较易。反之肿瘤晚期局部血运差,乏氧细胞多,对放射线敏感度低,放疗时需包括的正常组织多,修复差,疗效亦差。③肿瘤的生长方式。向下浸润较浅的肿瘤对放射较敏感,如菜花型肿瘤。反之,溃疡型、浸润型等浸润较深的肿瘤对放射不敏感。④肿瘤的生长部位。肿瘤生长的基底部(瘤床)为肌肉,血运又好,则放疗效果好。若癌床血运差,所在部位又不耐根治剂量则疗效差。如子宫颈癌局部血运好,阴道、子宫体等周围组织对放射线耐受量大,故放疗效果好,食管癌则放疗效果差。⑤全身健康情况。机体抵抗力强者疗效亦好,有全身性疾病者放疗效果差。⑥局部情况。晚期肿瘤常有合并感染,周围组织亦有炎症,局部血流不畅,肿瘤内乏氧细胞增多,放射敏感性下降。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条