1) arithmetic complexity
算术复杂性
1.
As to the DHTcalculation of N= 2' real sequence, the arithmetic complexity is real multiplication and real addition, which.
对N=2’点实序列DHT进行计算,其算术复杂性为个实乘和个实加,属目前运算量最小的一类算法。
2) arithmetric complexity
算术复杂性
1.
As to the DHT-Ⅰ calculation of M×N=2 r×2 s real sequence,the arithmetric complexity is 25 %~35 % less than the vector radix algorithm s and Bracewell algorithm s,and which means a new algorithm involving the least operation.
该文给出了计算第Ⅰ类二维离散Hartley变换 (2D -DHT -Ⅰ )的一种递推减半法 ,对M×N=2 r× 2 S2D -DHT -Ⅰ的计算 ,其算术复杂性比已有的向量基算法及Bracewell算法减少 2 5 %~ 35 % ,属目前运算量最小的一类算
3) algorithmic complexity
算法复杂性
1.
According to symbol series complexity theory, algorithmic complexity and fluctuation complexity were used to denote the dynamic characteristics of the pressure fluctuation time series in a gas-solid fluidized bed.
研究了气固流化床从起始流化态、鼓泡态、湍动态直至快速流化的四个典型流型下,压力脉动时间序列的算法复杂性和涨落复杂性随表观气速的变化趋势。
4) algorithm complexity
算法复杂性
1.
We compared Sequence Operation Theory with Monte Carlo method by a case study of power market risk assessment, and analyzed the algorithm complexity of them.
序列运算的算法复杂性及其与其他不确定性分析方法相比较的结果,都为序列运算理论提出了值得深入研究的问题。
5) complexity of algorithm
算法复杂性
1.
In view of the complexity of algorithm, the efficiency of algorithm about Newton iteration method with quadratic convergence rate and predictor iteration method with cubic convergence is discussed by using the concept of effective index of iteration process that was presented by Ostrowski.
从算法复杂性出发,采用Ostrowski给出的“迭代过程有效性指标”的概念,讨论了具有二阶收敛速度的牛顿迭代法和具有三阶收敛速度的预测式迭代法的有效性问题,给出牛顿迭代法的有效性指标为。
补充资料:复杂部分性发作
复杂部分性发作
〖HT5”SS〗complex partial seizures
癫痫发作的一个临床类型。以往又称为精神运动性癫痫。发作时有精神意识改变、意识丧失或处于朦胧状态。伴有自动症,为一系列无目的、不恰当而离奇的重复刻板运动,有些运动形式很简单,也有些病儿表现为复杂形式的自动症。有的病儿尚伴有感觉异常。脑电图90%异常,以棘波为主,也可为高幅Q或θ节律,可呈颞叶局灶性异常、双侧弥漫性异常或弥漫性阵发性电活动合并局灶异常。药物治疗痛可定口服有效,无效者可行手术治疗。预后较差,长期多次发作往往影响智力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条