1) Digital infrared pupillometry
数字化远红外瞳孔测量仪
2) computerized infrared pupillometer
计算机红外瞳孔测试仪
1.
The pupil sizes of all eyes were measured with computerized infrared pupillometer in light and dark environments respectively.
方法应用计算机红外瞳孔测试仪的亮刺激和暗刺激模式分别测量120例(240眼)近视患者LASIK术前及术后的瞳孔大小,记录瞳孔面积,每个刺激模式测量3次,取平均值。
3) infrared pupilometer
红外线瞳孔测试仪
1.
9 years) were evaluated for pupil sizes under scotopic condition using computerized infrared pupilometer.
方法 用红外线瞳孔测试仪 (pupilometer)测量93例正常人 (186眼 )在暗环境下的瞳孔大小。
4) pupillarymetry
瞳孔测量仪
1.
MethodsThe size of pupil was measured in 24 eyes of 24 volunteers under scotopic and photopic backgrounds using infred-pupillarymetry before and 30 minutes,4 and 6 hours after brimonidine tartrate drops was administered topi.
2%阿法根滴眼液1滴,在给药前及给药后30 m in、4 h和6 h分别以红外线瞳孔测量仪在不同亮度条件下测定瞳孔的大小。
5) iriscorder
红外线电子瞳孔仪
6) pupillary diameter measurement
瞳孔测量
补充资料:模拟测量与数字测量
宏观物理量本质上大都是固定或连续变化的模拟量。迄今为止的测量仪器的示值都模拟着被测量的变化。由于仪器本身的局限性,示值的分辨力只能达到2~3位有效数字,而且模拟式信号(测量数据)在测量过程中易受噪声和干?诺挠跋於渲怠K孀攀旨际醯姆⒄梗饬恳瞧魅战ナ只K贡徊獾哪D饬客ü#浠怀晌至浚倮檬旨际鹾图扑慊删屠刺岣卟饬康木范取⒖煽啃浴⒘榛钚院妥远潭取J质揭瞧饔檬胂允窘峁潦奖悖灰锥链恚局捣直媪纱?6、7位(电压表)乃至 9、10位(频率计数器)有效数字。而且数字信号(测量数据)采用高-低两个电平编码信号,不易受干扰而出错。
数字量是离散量,以一定的跨步(量子值)跃变。每个数字量是一系列阶跃跨步的总和,通常用n比特二进制编码来表示。量化即模-数变换的结果(图中粗线)只能在一些个别点全同于模拟量(细线)。二者之间不可避免的差异,称为量化误差或量化噪声。二进编码时,分辨率(一个量子)为1/(2n-1),8比特的分辨率为±2×10-3,16比特的为±8×10-6,24比特的为±3×10-8。测量的动态范围为n×6.02分贝。
量化过程需要一定时间τ,即模-数变换器的总采样时间。τ值正比于比特数n,反比于时钟(采样节拍)频率。显然,τ应与被测之量v的变化速率(dv/dt)相适应。测量误差为墹v=(墹v/墹t)τ。对于正弦变化量vsinωt,最大误差将为墹v=vωτ或墹v/v=ωτ。把1千赫正弦信号量化到10比特,若要求墹v/v与数字分辨率(1×10-3)相当,则要求τ≤160纳秒。测量速度与精确度之间存在矛盾,精确度要求越高,则总采样时间越长。
为了提高效率,可用较低的重复频率fs<<1/τ来进行采样,并在相继二次采样之间用保持电路来保持采得的值。若要从采样结果复现原来的信号,根据采样定理至少要求fs>2fn,这里fn是信号中所含的最高傅氏频率分量,这样复现的信号将无失真。然而,由于噪声的影响,而且需要滤除采样频率fs,实际上要求fs>5fn。采样保持电路的作用犹如一个低通滤波器,其截频为fs/2,并会产生一个相位延迟,其值为1/(2fs)。模-数变换在高速、高频方面受到限制。
模-数变换的逆过程就是数-模变换,即从数字式编码信号变换为对应的模拟式信号。当被变换的信号变化时,所得模拟信号呈现出量化阶梯。用低通滤波器滤除阶跃所产生的谐波,即得到平滑的模拟信号。若模拟信号中低频傅氏分量的谐波低于高频傅氏分量,则谐波的滤除显然有困难。
除了可以用数-模变换电路作反馈来构成模-数变换器之外,在测量仪器和系统中,数-模变换器常用以产生模拟信号来驱动模拟式终端设备(例如X-Y绘图仪和示波器等)和用于任意波形信号发生器。
数字量是离散量,以一定的跨步(量子值)跃变。每个数字量是一系列阶跃跨步的总和,通常用n比特二进制编码来表示。量化即模-数变换的结果(图中粗线)只能在一些个别点全同于模拟量(细线)。二者之间不可避免的差异,称为量化误差或量化噪声。二进编码时,分辨率(一个量子)为1/(2n-1),8比特的分辨率为±2×10-3,16比特的为±8×10-6,24比特的为±3×10-8。测量的动态范围为n×6.02分贝。
量化过程需要一定时间τ,即模-数变换器的总采样时间。τ值正比于比特数n,反比于时钟(采样节拍)频率。显然,τ应与被测之量v的变化速率(dv/dt)相适应。测量误差为墹v=(墹v/墹t)τ。对于正弦变化量vsinωt,最大误差将为墹v=vωτ或墹v/v=ωτ。把1千赫正弦信号量化到10比特,若要求墹v/v与数字分辨率(1×10-3)相当,则要求τ≤160纳秒。测量速度与精确度之间存在矛盾,精确度要求越高,则总采样时间越长。
为了提高效率,可用较低的重复频率fs<<1/τ来进行采样,并在相继二次采样之间用保持电路来保持采得的值。若要从采样结果复现原来的信号,根据采样定理至少要求fs>2fn,这里fn是信号中所含的最高傅氏频率分量,这样复现的信号将无失真。然而,由于噪声的影响,而且需要滤除采样频率fs,实际上要求fs>5fn。采样保持电路的作用犹如一个低通滤波器,其截频为fs/2,并会产生一个相位延迟,其值为1/(2fs)。模-数变换在高速、高频方面受到限制。
模-数变换的逆过程就是数-模变换,即从数字式编码信号变换为对应的模拟式信号。当被变换的信号变化时,所得模拟信号呈现出量化阶梯。用低通滤波器滤除阶跃所产生的谐波,即得到平滑的模拟信号。若模拟信号中低频傅氏分量的谐波低于高频傅氏分量,则谐波的滤除显然有困难。
除了可以用数-模变换电路作反馈来构成模-数变换器之外,在测量仪器和系统中,数-模变换器常用以产生模拟信号来驱动模拟式终端设备(例如X-Y绘图仪和示波器等)和用于任意波形信号发生器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条