1) magnetic rotary encoder
磁性旋转编码器
1.
The mechanism of the magnetic rotary encoder and the working process of the magneto re- sistance readout head are analyzed in detail.
分析了磁性旋转编码器的工作原理,对磁阻磁头的工作过程作了详细分析。
2) magnetic rotary encoder
磁旋转编码器
1.
A magnetic rotary encoder used as PMSM angle sensor was introduced.
根据电机反电动势信号与电机位置角的关系,利用电机反电动势过零信号来定位磁旋转编码器。
2.
The incremental magnetic rotary encoder, as a corner position sensor, can be improved its measure accuracy by the way of quadruplicated frequency circuit.
增量式磁旋转编码器作为转角位置传感器,可以用四倍频的方法提高其测量精度。
3.
We analyse the structure of magnetic rotary encoder(MRE),its work principle,the recording media on the magnetic drum and the magnetic sensor,and introduce the application of MRE,the development prospect and Point out that MRE is very important for the development of high technology industry in the future.
论述了磁旋转编码器的结构、工作原理、磁鼓记录媒体和磁阻传感器的特性 ,介绍了磁旋转编码器的应用领域和使用功能 ,并对其发展前景进行了展望。
3) rotary encoder
旋转编码器
1.
Application of rotary encoder in four wheel steering vehicle;
旋转编码器在四轮转向汽车上的应用
2.
Design of the counting software to resist the fitters of hand rotary encoder
手摇旋转编码器的抗抖动计数软件设计
3.
Design of the length measurement system based on rotary encoder
基于旋转编码器的长度测量系统设计
4) rotary coder
旋转编码器
1.
The establishment of the system to measure displacement based on two stage rotary coder
建立基于两级旋转编码器的位置检测系统
2.
Meanwhile,in combination of the rotary coder and PLC is emphatically introduced,the hardware wiring diagram and the program design of the system are also given.
着重介绍了使用旋转编码器与PLC相结合来提高定尺长度精度的方法。
5) encoder
[in'kəudə]
旋转编码器
1.
A encoder of this system can be linked to the shaft to be measured with any ratio,a degree reflecting mark should be sticked on the shaft and a photo-electricity sensor should be used to turn the mark.
系统中用一旋转编码器与被测轴按任意啮合比进行啮合,在被测轴上贴一零度光标,并用光电传感器把零度光标转变为电脉冲信号。
补充资料:磁性材料2.薄膜磁性材料
磁性材料2.薄膜磁性材料
Magnetie Materials 2.Thin Film
在一定外加磁场作用下,其反磁化畴(磁矩取向与外磁场方向相反的畴)变为圆柱形磁畴。从膜面上看,这些柱形畴好像浮着的一群圆泡,故称磁泡或叫泡踌(另见磁性材料2.昨晶态磁性材料)。在特定的电路图形、电流方向和一定磁场情况下,可做到控制材料中磁泡的产生、传翰和消失,实现信息的储存和逻辑运算的功能。磁泡的直径在微米量级(0 .5~5协m),每个磁泡的迁移率在1 .26~12.6em八s·A/m)〔 102一i03cm八s·oe)〕,因而可制成存储密度为兆位/cmZ(Mbit/cmZ)和数据处理速率为兆位/s(M肠t/s)的运算器件。磁泡器件经过近20年研究和开发,已取得广泛的实际应用。 对磁泡材料的主要要求是:(l)各向异性常数凡>粤斌,磁化强度从>外磁场强度H;(2)杂质缺陷小,2一~”~’.J泌~-一‘产’~~一~一’、~尹一~~~’J”均匀性好。目前研究得比较清楚的有铁氧体单晶薄膜和稀土一过渡金属薄膜。从制备工艺和性能稳定、器件开发等情况看,以铁氧体磁泡材料比较成熟,早期是用钙钦石型铁氧体单晶片来作磁泡材料,后为YIG单晶薄膜所取代。它是用液相外延法在Gd3Ga5OI:(简称GGO)基片上生成的单晶薄膜,其厚为微米量级。表4为稀土石榴石R3FesolZ的磁性;表5为一些磁泡材料的基本特性数值。农4稀土石抽石R.Fe‘ol,的磁性┌───────────┬────┬────┬────┬────┬────┬────┬────┬────┬─────┬────┬────┐│R │Y │Sm │EU │Gd │Tb │Dy │、Ho │Er │T】11 │Yb │Lu │├───────────┼────┼────┼────┼────┼────┼────┼────┼────┼─────┼────┼────┤│补偿温度,~p,K │ 560 │ 560 │ 570 │ 290 │ 246 │ 220 │ 136 │ 84│4
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条