说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基于迭代局部最近点法
1)  iterative local closest point
基于迭代局部最近点法
1.
Auto and rapid medical image registration for image guided neurosurgery system based on iterative local closest point;
神经外科导航系统基于迭代局部最近点法技术的形态学三维数据场的快速配准与融合
2)  ICP algorithm
迭代最近点算法
1.
In this paper, the reliability of the algorithm of terrain matching based on ICP algorithm was analyzed.
根据迭代最近点算法的原理,从几何直观的角度研究了地形辅助导航系统匹配的可靠性,推导了旋转和平移的可靠性公式,并进行了数字仿真,结果表明,本文推导的可靠性结论是正确的。
2.
As the traditional ICP algorithm is liable to get local minimization problem and have a bad performance of real-time,a BP neural network was presented in the ICP algorithm.
鉴于传统的迭代最近点算法存在着易陷入局部最优的缺陷和实时性不好的问题,提出了一种将BP神经网络引入迭代最近点算法中进行地形匹配的新方法。
3)  iterative closet point algorithm
最近点迭代法
4)  iterative closest point
迭代最近点
1.
On the basis of this,a pole-map based localization was introduced which does map-matching using iterative closest points and can enhance the accuracy of localization.
在此基础上,采用基于柱图的定位方法,使用迭代最近点算法进行地图匹配,提高了定位精度。
5)  ICP
最近点迭代
1.
Examples show that RMGA can achieve a better result and then the iterative closest point(ICP) algorithm can obtain a accurate registration.
针对不同视角下测量的点云在配准时计算量大、速度慢的缺点,提出了一种基于实数编码的多种群遗传算法的配准方法,可以克服标准遗传算法速度慢、精度差的缺点,有效地提高全局搜索能力,实验结果表明:实数编码的多种群遗传算法能够快速获得较好的配准结果,以此结果作为初始位置进行最近点迭代法配准,能迅速达到所要求的精度,获得理想的配准效果。
2.
An ICP and GPC based 3D planar scene integration algorithm is proposed in the software module.
介绍了系统的软件模块,提出了结合最近点迭代(ICP)和通用多边形裁剪(GPC)的3D平面场景合成方法。
6)  improved ICP algorithm
改进最近点迭代算法
补充资料:策略迭代法
      动态规划中求最优策略的基本方法之一。它借助于动态规划基本方程,交替使用"求值计算"和"策略改进"两个步骤,求出逐次改进的、最终达到或收敛于最优策略的策略序列。
  
  例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为  
  (1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
  
  再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
  
  ①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
  
  
  
  
  ②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
  
  在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
  
  对于更一般形式的动态规划基本方程
  
   (2)这里??,H,φ为给定实函数。上述两个步骤变成:
  
  ①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
  
  ②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
  
  对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
  
  策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
  
  对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条