1) bogus symplectic space
伪辛空间
1.
The forming of concept of bogus symplectic space is studied.
论述了伪辛空间概念的形成,深入阐述了其本质属性及分化、演变和扩张,揭示了伪辛空间与辛空间及欧氏空间的内在联系和区别。
2.
The essential property and developmental course of Euclidean space,symplectic space and bogus symplectic space are studied.
论述欧氏空间、辛空间、伪辛空间的本质属性及演变过程 。
3.
In this paper,we construct the concept of bogus symplectic space,discuss the motion of bogus symplectic space and discribe the property of the motion by showing the composition and manifestation form of the motion,the generation and decomposition of the matrix of motion.
给出伪辛空间的概念,论述伪辛空间中的运动。
2) pseudo-symplectic space
伪辛空间
1.
The association schemes of a kind of 2-dimensional subspaces of pseudo-symplectic space F_q~((2v+1+l)) and its structure;
伪辛空间F_q~(2v+1+l)中一类2-维子空间的结合方案及其结构
2.
After illustrating the conception pseudo-symplectry ,the evolvement and extension of the conception symplectry and the formation of pseudo-symplectic space,the nature of pseudo-symplectic space and the inner relationship and differences between pseudo-symplectic space and symplectic space are reflected here.
通过对辛空间的深入分析和研究,从空间中的度量与向量的迷向性问题入手并展开较为详细的讨论,定义"伪辛"的概念,阐述"辛"概念的演变、扩充与伪辛空间生成的事实,进而揭示伪辛空间的本质属性及其与辛空间的内在联系与区别。
3) pseudo symplectic space
伪辛空间
1.
Let IF q be the finite field with q elements of charcteristic 2, IF q (2v+2) be the 2v +2-dimtnsional pseudo symplectic space over IF q.
文中利用IFq 上 2v + 2维伪辛空间IFq(2v +2 ) 中的 ( 1 ,0 ,0 ,0 )型子空间作为处理 ,在v≥ 2和v =1时分别构成作了类数为 3和 2的结合方案 ,并计算了其参
4) affine-pseudo-symplectic space
仿射伪辛空间
5) Singular pseudosymplectic space
奇异伪辛空间
6) pseudo-Euclidean space
伪欧空间
补充资料:辛空间
辛空间
symplectic space
【补注】尸2。+,中辛几何的记号SpZ。+l不是惯常的记号.用SpZ。(k)表示具有交错(即斜对称)双线性型的线性空间k’”中的辛群.尸2。*,(k)中相应的射影群记成PSpZ。(k);它就是上面正文中所说的群,称为射影辛群(projectives丫mP犯cticgouP). 具有零配极的射影空间中的极子空间,也称作迷向子空间(isotropic subsPace),构成所谓极几何(加lar罗。此try)的例子(亦见极空I’N(pOlar space);可见【All).在Tits的厦(b泌dings)理论中,解释为极几何的辛空间是型C。的厦(见【A2」及舫ts厦(Titsb山lding)).辛空间【sylnpleeties声ce;c”Mn月eKT“,eeKoe npoeT.Pa“cTB01 域k上奇维数的射影空间尸2。十,,赋予了零配极的对合关系;用SpZ。十、表示它. 令chark护2 .SpZ。十:中绝对的零配极总能写成形式。一“:,、j,其中{}a,,}{是斜对称矩阵(“ij二一aj)·用向量形式,绝对零配极可写成。=Ax,这里A是斜对称算子,在适当基下,它的矩阵化成 1}0 1 11 }1一10!{ {}A}}=}I’二}l l)0 11} l{一,“{{这时,绝对零配极取典范形式 uZ=x 2.+1,“21+l二一戈2苦.绝对零配极诱导了一个双线性型,写成典范形式如下: xAy一艺(二’‘y”+’一二’1+’夕’,).SpZ。十之的与其零配极交换的直射变换称为辛变换(s”11-plectic transfo~tion);确定这些直射变换的算子称为辛(synlplectic)算子.}川}的上述典范形式确定了辛算子U的2”十2阶方阵,其元素满足条件 军(U了‘U:“’一U了’‘’U:‘)一”,.*一”,一其中占。,。是Krollecker符号.这样的矩阵称为辛矩阵;其行列式等于1.辛变换构成群,它是一个Lie群. 空间SpZ。*;的每个点位于它相对于绝对零配极的极超平面上.也能定义SpZ。、:的极子空间.SpZ。、l的自极n空间的流形称为它的绝对线性复形(absolutehaear comPlex).在这背景下,辛群也称(线性的(h-near))复形群(comPleX group). 每对直线以及它们在零配极下的极(Zn一1)空间在S仇。+,中确定了对于该空间的辛变换群的唯一辛不变量.过每条线的任何点都有该线和(Zn一l)空间的横截通过,这就确定了点的射影四元组.这是辛不变量(s卯叩kctic invariani)的几何解释,它断定了点的这些四元组的交叉比的等式. 辛3维空间可在双曲空间中解释,这给出了辛空间和双曲空间的联系.例如Sp3的辛变换群同构于双曲空间’54的运动群.按这种解释,辛不变量相应于双曲空间中点之间的距离.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条