1) restriction fragment difference display
限制性酶切片段差异展示
1.
Analyze the differences in the genes expressions of the two types of the cells using restriction fragment difference display method.
使用限制性酶切片段差异展示技术分离滑膜成纤维细胞与皮肤成纤维细胞差异表达之基因。
2) Restriction fragment differential display PCR
限制性酶切片段差异显示技术
3) restriction fragment differential display
限制性酶切片段差异显示
1.
The restriction fragment differential display(RFDD)-PCR technique overcomes the limitations of standard differ-ential display.
改进后的限制性酶切片段差异显示技术(RFDD)-PCR采用TaqI酶切双链cDNA,连上特殊设计的接头,再用经特殊设计的特异性配对于接头的引物来扩增,因此能重点扩增编码区并能极大地消除假阳性率。
4) restriction fragment differential display-polymerase ch ain reaction
限制片段差异显示聚合酶链反应
5) restriction fragments differential display PCR
限制片段差异显示PCR
1.
Analysis of differential expression genes related to different metastasis potential of adenoid cystic carcinoma using restriction fragments differential display PCR;
方法用限制片段差异显示PCR技术(restriction fragments differential display PCR,RFDD-PCR)建立涎腺腺样囊性癌高、低转移细胞株(ACC-M、ACC-2)的表达谱。
6) Restrictive fragment difference display PCR(RFDD-PCR)
限制性酶切差异显示技术
补充资料:限制性核酸内切酶
简称限制性核酸酶。 这是一类能从DNA分子中间水解磷酸二酯键,从而切断双链DNA的核酸水解酶。它们不同于一般的脱氧核糖核酸酶(DNase),它们的切点大多很严格,要求专一的核苷酸顺序──识别顺序。长期以来,难以深入研究的DNA大分子,借此可以切割成特定的小片段来分析。限制性核酸酶的发现,为基因结构、DNA碱基顺序分析和基因工程的研究开辟了途径。为此,W.阿尔伯,H.史密斯和D.内森斯三人共同获得了1978年诺贝尔生理学或医学奖。
限制性核酸酶在原核和真核细胞中都有发现,按其性质可分为三大类。 所谓Ⅰ型的酶要求DNA分子上有特定的识别顺序,但是切点却不在此识别顺序之中,而与之有一定距离。在反应中,它还要求有ATP和S-腺苷甲硫氨酸(SAM)。酶由不同的α,β,γ亚基组成。全酶兼有限制性内切酶的活性和甲基化酶的活性。Ⅲ型的酶与Ⅰ型的酶有相似特征,只是切点距识别顺序距离是严格的。
Ⅱ型的酶,可说是独立的限制性核酸内切酶。因为,它并不兼有甲基化酶的活性。细胞内可另有独立的甲基化酶。它切断DNA时不需ATP,也不需SAM。它的切点是严格的,而且就在识别顺序之中。Ⅱ型的酶在蛋白质组成上比Ⅰ型、Ⅲ型要简单的多,它只有单一的亚基。以二体或四体发挥作用。
至1988年,从细菌中发现的Ⅱ型的限制性核酸酶已有约850种:下面对Ⅱ型酶作进一步的介绍。常用的限制性核酸酶有EcoRⅠ,HindⅢ,AluⅠ,HaeⅢ等,其命名都以菌种名的第一个字母的大写字母起头,以菌种属名的字首二个小写字母继后。必要时加上菌株的标志字母,如EcoRⅠ之R或HindⅢ之d。最后,若由此菌株可以得到的限制性核酸酶不止一种,则按Ⅰ,Ⅱ,Ⅲ编号。如:
EcoRⅠ 来自 Escherichia coli RY13之酶Ⅰ
HindⅢ 来自 Haemophilius influenzae Rd之酶Ⅲ
AluⅠ 来自 Arthrobacter luteus 之酶Ⅰ
HaeⅢ 来自 Haemophilus aegyptius 之酶Ⅲ
这些酶的识别顺序多数是4或6个碱基对。有的酶要5或 7个甚至更长的识别顺序。识别顺序短的在DNA分子上出现的几率多,酶可把DNA分子切成较多的小片段。识别顺序长的则往往只切出少数大片段。这些酶切片段统称为限制性片段。 根据不同限制性核酸酶在某DNA分子上的切点分布,可以绘出该DNA分子的"限制性图谱"即"酶切图谱",也称"物理图谱"。限制性图谱可以反映出一个DNA片段或基因结构的基本特征。
这些酶的识别顺序大都具有 180°旋转对称的特征。切点绝大多数都在识别顺序之内。切口有时是平头的,即双链的切点位置相同。如AluⅠ和HaeⅢ。有时切口可带有一个短的单链末端,如EcoRⅠ和HindⅢ。
这种短的单链末端,称为"粘性末端"。它与对应的单链末端很容易恢复原来的碱基配对,而粘接成双链。这个过程称为"退火"。 通过粘性末端使DNA片段相互连接,非常准确方便,在基因工程中十分有用。
限制性核酸酶的鉴定,常用一些纯的病毒DNA作为标准底物,观察其酶切片段在凝胶电泳中所出现的条带。最常用的标准DNA是λ噬菌体的DNA。
限制性核酸酶在原核和真核细胞中都有发现,按其性质可分为三大类。 所谓Ⅰ型的酶要求DNA分子上有特定的识别顺序,但是切点却不在此识别顺序之中,而与之有一定距离。在反应中,它还要求有ATP和S-腺苷甲硫氨酸(SAM)。酶由不同的α,β,γ亚基组成。全酶兼有限制性内切酶的活性和甲基化酶的活性。Ⅲ型的酶与Ⅰ型的酶有相似特征,只是切点距识别顺序距离是严格的。
Ⅱ型的酶,可说是独立的限制性核酸内切酶。因为,它并不兼有甲基化酶的活性。细胞内可另有独立的甲基化酶。它切断DNA时不需ATP,也不需SAM。它的切点是严格的,而且就在识别顺序之中。Ⅱ型的酶在蛋白质组成上比Ⅰ型、Ⅲ型要简单的多,它只有单一的亚基。以二体或四体发挥作用。
至1988年,从细菌中发现的Ⅱ型的限制性核酸酶已有约850种:下面对Ⅱ型酶作进一步的介绍。常用的限制性核酸酶有EcoRⅠ,HindⅢ,AluⅠ,HaeⅢ等,其命名都以菌种名的第一个字母的大写字母起头,以菌种属名的字首二个小写字母继后。必要时加上菌株的标志字母,如EcoRⅠ之R或HindⅢ之d。最后,若由此菌株可以得到的限制性核酸酶不止一种,则按Ⅰ,Ⅱ,Ⅲ编号。如:
EcoRⅠ 来自 Escherichia coli RY13之酶Ⅰ
HindⅢ 来自 Haemophilius influenzae Rd之酶Ⅲ
AluⅠ 来自 Arthrobacter luteus 之酶Ⅰ
HaeⅢ 来自 Haemophilus aegyptius 之酶Ⅲ
这些酶的识别顺序多数是4或6个碱基对。有的酶要5或 7个甚至更长的识别顺序。识别顺序短的在DNA分子上出现的几率多,酶可把DNA分子切成较多的小片段。识别顺序长的则往往只切出少数大片段。这些酶切片段统称为限制性片段。 根据不同限制性核酸酶在某DNA分子上的切点分布,可以绘出该DNA分子的"限制性图谱"即"酶切图谱",也称"物理图谱"。限制性图谱可以反映出一个DNA片段或基因结构的基本特征。
这些酶的识别顺序大都具有 180°旋转对称的特征。切点绝大多数都在识别顺序之内。切口有时是平头的,即双链的切点位置相同。如AluⅠ和HaeⅢ。有时切口可带有一个短的单链末端,如EcoRⅠ和HindⅢ。
这种短的单链末端,称为"粘性末端"。它与对应的单链末端很容易恢复原来的碱基配对,而粘接成双链。这个过程称为"退火"。 通过粘性末端使DNA片段相互连接,非常准确方便,在基因工程中十分有用。
限制性核酸酶的鉴定,常用一些纯的病毒DNA作为标准底物,观察其酶切片段在凝胶电泳中所出现的条带。最常用的标准DNA是λ噬菌体的DNA。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条