1) iterative scheme of finite element method
有限元迭代格式
2) method of limited unit again and again
有限元迭代法
3) iterative finite element method
迭代有限元法
4) iterated defect correction
有限元迭代校正
1.
In addition, we have proven that the iterated defect correction is convergent and give some numeric tests as experiments for theory results.
本文研究了两点边值问题插值算子的性质,证明了其插值算子具有压缩性及其有限元迭代校正解收敛,并给出了数值例子。
2.
At a result ,we have proven that the iterated defect correction is convergent and give some numeric tests as experiments for theory results.
本文研究了矩形元上插值算子的性质 ,证明了一维及二维情形下插值算子具有压缩性 ,从而证明了矩形元上有限元迭代校正解收敛 ,并对几种不同类型的 L型区域给出了数值例子 ,最后对三维及三维就以上情形作出了讨论 。
3.
In [3-4], the authors have proved that the iterated defect correction oflinear finite element solution for standard elliptic problems converges tothe petrov-Galerkin approximation solution by using the so-calledcontractivity of the interpolation operator for triangular and rectangularelements.
其中[3],[4]中分别利用三角形元上插值算子的压缩性质和矩形元上插值算子的压缩性质证明了标准的椭圆方程线性有限元迭代校正解收敛于 petrov-Galerkin 近似解。
5) Finite element-iterative algorithm
有限元-迭代法
6) finite element scheme
有限元格式
1.
In order to predict the deformation accurately,a kind of finite element scheme is derived to analyze mechanical behavior of fired floors.
为了准确地预测这种变形,推导了一种能同时考虑板厚平均温度和温度梯度的板单元有限元格式,用以分析受火楼板的热力学响应。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条