1) micro-tension test
微拉伸试验
1.
The micro-tension test was performed on the specimens,the failure lo.
试样采用微拉伸试验,记录断裂时最大负荷值,并在20倍体式显微镜下观察断裂面,评价断裂发生的情况。
2) tensile test of microsample
微型拉伸试验
3) tensile test
拉伸试验
1.
On the Tensile Failure and Material Failure in the Tensile Test of Metal Material;
论金属材料拉伸试验中的拉伸失稳与材料失稳
2.
A SEARCH FOR TENSILE TEST IN SURVEYING TENSILE STRENGTH OF METAL MATERIAL;
对拉伸试验测试金属材料强度的探讨
3.
Study on several question existed in tensile test of cold-rolled and twisted bars;
关于冷轧扭钢筋拉伸试验中若干问题的探讨
4) tensile testing
拉伸试验
1.
Interlaboratory round robin comparison of tensile testing and the proficiency analysis of plastic indexes;
拉伸试验的验证比对与延塑性指标能力分析
2.
The internal structure and fracture features in samples 45 steel after tensile testing is perfectly ana- lyzed in this paper.
对45钢力学拉伸试验后试样的内部组织结构及断口的全面分析,认为钢中存在较高含量的氢是造成钢材脆性断裂的主要原因。
3.
Under the influence of notch effect,plastic deformation and other mechanical behavior parameters on different section of specimen about plastically metallic material were studied by means of tensile testing.
通过拉伸试验研究了在"缺口效应"影响下塑性金属材料试样不同截面处的塑性变形规律及其它常规力学性能指标,结果表明所试验金属材料缺口拉伸塑性变形主要集中发生在缺口附近局部区域,同时探讨了增加"缺口塑性"这一新的性能指标及建立相关试验标准的必要性。
5) tension test
拉伸试验
1.
The sample of Q235B hot-rolled H section steel had a layered fracture after tension test.
Q2 35B热轧H型钢拉伸试验后出现分层断口。
2.
In this paper, the data acquisition and data processing of a microcomputer equipped tension test are presented.
在拉伸试验中利用微机进行数据采集和数据处理,从而达到对该常规试验测试现代化的目的。
6) tension tests
拉伸试验
1.
The characteristic of the visco-elastic models and the damage models have been analyzed by the SBS modified asphalt mixture monaxial tension tests,and coupling becomes visco-elastic and damage models in succession.
通过SBS改性沥青混合料的单轴拉伸试验,分析了粘弹性模型与损伤模型的特性,并耦合成粘弹性连续损伤模型;从能量的角度考虑了SBS改性沥青混合料的疲劳损伤特性和损伤效应,并建立了一种与拉伸应变水平相关的疲劳损伤模型。
补充资料:机械工程材料:拉伸试验
测定材料在拉伸载荷作用下的一系列特性的试验﹐又称抗拉试验。它是材料机械性能试验的基本方法之一﹐主要用於检验材料是否符合规定的标準和研究材料的性能。
性能指标 拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗產生弹性变形﹑塑性变形和断裂的能力。材料在承受拉伸载荷时﹐当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。產生屈服时的应力﹐称屈服点或称物理屈服强度﹐用S(帕)表示。工程上有许多材料没有明显的屈服点﹐通常把材料產生的残餘塑性变形为 0.2%时的应力值作为屈服强度﹐称条件屈服极限或条件屈服强度﹐用0.2 表示。材料在断裂前所达到的最大应力值﹐称抗拉强度或强度极限﹐用b(帕)表示。
塑性是指金属材料在载荷作用下產生塑性变形而不致破坏的能力﹐常用的塑性指标是延伸率和断面收缩率。延伸率又叫伸长率﹐是指材料试样受拉伸载荷摺断后﹐总伸长度同原始长度比值的百分数﹐用表示。断面收缩率是指材料试样在受拉伸载荷拉断后﹐断面缩小的面积同原截面面积比值的百分数﹐用表示。
条件屈服极限0.2﹑强度极限b﹑伸长率 和断面收缩率是拉伸试验经常要测定的四项性能指标。此外还可测定材料的弹性模量E ﹑比例极限﹑弹性极限等。
试验方法 拉伸试验在材料试验机上进行。试验机有机械式﹑液压式﹑电液或电子伺服式等型式。试样型式可以是材料全截面的﹐也可以加工成圆形或矩形的标準试样。钢筋﹑线材等一些实物样品一般不需要加工而保持其全截面进行试验。试样製备时应避免材料组织受冷﹑热加工的影响﹐并保证一定的光洁度。
试验时﹐试验机以规定的速率均匀地拉伸试样﹐试验机可自动绘製出拉伸曲线图。对於低碳钢等塑性好的材料﹐在试样拉伸到屈服点时﹐测力指针有明显的抖动﹐可分出上﹑下屈服点(和)﹐在计算时﹐常取。材料的 和可将试验断裂后的试样拼合﹐测量其伸长和断面缩小而计算出来。
拉伸曲线图 由试验机绘出的拉伸曲线﹐实际上是载荷-伸长曲线(见图 拉伸曲线图 )﹐如将载荷坐标值和伸长坐标值分别除以试样原截面积和试样标距﹐就可得到应力-应变曲线图。图中op部分呈直线﹐此时应力与应变成正比﹐其比值为弹性模量﹐P 是呈正比时的最大载荷﹐p点应力为比例极限。继续加载时﹐曲线偏离op﹐直到 e点﹐这时如卸去载荷﹐试样仍可恢復到原始状态﹐若过e点试样便不能恢復原始状态。e点应力为弹性极限。工程上由於很难测得真正的﹐常取试样残餘伸长达到原始标距的0.01%时的应力为弹性极限﹐以0.01 表示。继续加载荷﹐试样沿es曲线变形达到s点﹐此点应力为屈服点S或残餘伸长为 0.2%的条件屈服强度0.2。过s点继续增加载荷到拉断前的最大载荷b点﹐这时的载荷除以原始截面积即为强度极限b。在 b点以后﹐试样继续伸长﹐而横截面积减小﹐承载能力开始下降﹐直到 k点断裂。断裂瞬间的载荷与断裂处的截面的比值称断裂强度。
性能指标 拉伸试验可测定材料的一系列强度指标和塑性指标。强度通常是指材料在外力作用下抵抗產生弹性变形﹑塑性变形和断裂的能力。材料在承受拉伸载荷时﹐当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。產生屈服时的应力﹐称屈服点或称物理屈服强度﹐用S(帕)表示。工程上有许多材料没有明显的屈服点﹐通常把材料產生的残餘塑性变形为 0.2%时的应力值作为屈服强度﹐称条件屈服极限或条件屈服强度﹐用0.2 表示。材料在断裂前所达到的最大应力值﹐称抗拉强度或强度极限﹐用b(帕)表示。
塑性是指金属材料在载荷作用下產生塑性变形而不致破坏的能力﹐常用的塑性指标是延伸率和断面收缩率。延伸率又叫伸长率﹐是指材料试样受拉伸载荷摺断后﹐总伸长度同原始长度比值的百分数﹐用表示。断面收缩率是指材料试样在受拉伸载荷拉断后﹐断面缩小的面积同原截面面积比值的百分数﹐用表示。
条件屈服极限0.2﹑强度极限b﹑伸长率 和断面收缩率是拉伸试验经常要测定的四项性能指标。此外还可测定材料的弹性模量E ﹑比例极限﹑弹性极限等。
试验方法 拉伸试验在材料试验机上进行。试验机有机械式﹑液压式﹑电液或电子伺服式等型式。试样型式可以是材料全截面的﹐也可以加工成圆形或矩形的标準试样。钢筋﹑线材等一些实物样品一般不需要加工而保持其全截面进行试验。试样製备时应避免材料组织受冷﹑热加工的影响﹐并保证一定的光洁度。
试验时﹐试验机以规定的速率均匀地拉伸试样﹐试验机可自动绘製出拉伸曲线图。对於低碳钢等塑性好的材料﹐在试样拉伸到屈服点时﹐测力指针有明显的抖动﹐可分出上﹑下屈服点(和)﹐在计算时﹐常取。材料的 和可将试验断裂后的试样拼合﹐测量其伸长和断面缩小而计算出来。
拉伸曲线图 由试验机绘出的拉伸曲线﹐实际上是载荷-伸长曲线(见图 拉伸曲线图 )﹐如将载荷坐标值和伸长坐标值分别除以试样原截面积和试样标距﹐就可得到应力-应变曲线图。图中op部分呈直线﹐此时应力与应变成正比﹐其比值为弹性模量﹐P 是呈正比时的最大载荷﹐p点应力为比例极限。继续加载时﹐曲线偏离op﹐直到 e点﹐这时如卸去载荷﹐试样仍可恢復到原始状态﹐若过e点试样便不能恢復原始状态。e点应力为弹性极限。工程上由於很难测得真正的﹐常取试样残餘伸长达到原始标距的0.01%时的应力为弹性极限﹐以0.01 表示。继续加载荷﹐试样沿es曲线变形达到s点﹐此点应力为屈服点S或残餘伸长为 0.2%的条件屈服强度0.2。过s点继续增加载荷到拉断前的最大载荷b点﹐这时的载荷除以原始截面积即为强度极限b。在 b点以后﹐试样继续伸长﹐而横截面积减小﹐承载能力开始下降﹐直到 k点断裂。断裂瞬间的载荷与断裂处的截面的比值称断裂强度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条