1) mammalian spermatogenesis
哺乳动物精子发生
1.
Transcription in mammalian spermatogenesis is highly active until mid-stage of spermiogenesis when it suddenly ceases.
在哺乳动物精子发生中,存在着特异而精细的转录调控。
3) mammalian faunas paleoecology
哺乳动物群生态
4) aquatic mammalogy
水生哺乳动物学
5) mammal
[英]['mæml] [美]['mæmḷ]
哺乳动物
1.
Progress of research on ovarian transplantation in mammal;
哺乳动物卵巢移植研究进展
2.
Effect of Polygonum multiflorum Thunb.Extract on the Stable State of Skin of Mammal;
何首乌提取物对哺乳动物皮肤稳态的影响
3.
Epidermal Growth Factor Family and the Mammalian Embryo Implantation;
表皮生长因子家族与哺乳动物的胚胎着床
6) Mammalian
[英][mæ'meiljən] [美][mæ'meljən]
哺乳动物
1.
small-interfering RNA suppress targeted gene expression in mammalian cells;
siRNA在哺乳动物基因研究中的应用
2.
Effects of storing time of blood in vitro on mammalian hemorheological characteristics;
鼠、犬、人等哺乳动物全血体外放置时间对其血液流变特性的影响
3.
The scaling exponents of cardiovascular system parameters for mammalian;
哺乳动物心血管系统参数的指数标度律
补充资料:精子(动物)(jingzi
━━━━━━━━━━━━━━━━━━━━━━━━
典型精子的结构
头部
颈部
尾部
中段
主段
末段
非典型精子结构
精子发生
精子发生的激素调控
精子发生中的基因调控
━━━━━━━━━━━━━━━━━━━━━━━━
雄性动物的生殖细胞。其形状与一般细胞有很大差异。各种动物的精子可以分为典型和非典型两类,典型的一般为蝌蚪状,头部近圆柱形(各种动物不尽相同),尾部细长,如鞭毛(图1)。非典型的精子形态多样但均缺乏鞭毛(图2)。 一个尚无解释的现象是所谓变异型精子的产生。在哺乳类(包括人类)、鸟类、两栖类、鱼类、昆虫和环节动物,同一个体中,不是由于退化或病理的原因,除典型的精子而外,还产生特小、特大、或者甚至不只一条鞭毛的变异型。海产和淡水前鳃类(软体动物)的变异型精子的形状与正常的完全不同。
典型精子的结构
自 A.van列文虎克1677年观察到人和一些高等动物的精子以来,迄今已研究了一千多种动物的精子,其中大部分都是蝌蚪状的。50年代以来对精子的生物学特性的认识取得了迅速的进展。以哺乳类为例,精子的结构可分为头、颈和尾3部分。
头部 主要由细胞核和顶体组成,呈圆球形、长柱形、螺旋形、梨形和斧形等,这些形状都是由核和顶体的形状决定的。
成熟精子的细胞核含有高度致密的染色质,在光学显微镜和电子显微镜下都难以区分其结构。核的前端有顶体,是由双层膜组成的帽状结构覆盖在核的前2/3部分,靠近质膜的一层称为顶体外膜,靠近核的一层称为顶体内膜。顶体内有水解酶性质的颗粒,它与精子通过卵外各种卵膜有关。在顶体和核之间的空腔称为顶体下腔,内含肌动蛋白。有些无脊椎动物的精子受精时产生顶体反应:肌动蛋白聚合形成顶体突起或顶体丝;使精子能附着于卵的质膜上,导致精卵融合──受精(动物)。
核膜虽为双层膜结构,但两层的间距很小,而且只有在核后端与颈部相连的转褶处有核膜孔。
颈部 此部最短。位于头部以后,呈圆柱状或漏斗状,又称为连接段。它前接核的后端,后接尾部。在前端有基板,由致密物质组成,刚好陷于核后端称为植入窝的凹陷之中。基板之后有一稍厚的头板,两者之间有透明区,其中的细纤维通过基板接连于核后端的核膜。在头板之后为近端中心粒,它虽然稍有倾斜,但与其后的远端中心粒所形成的轴丝几乎垂直。围着这些结构有九条由纵形纤维组成的显示深浅间隔的分节柱,线粒体分布在分节柱的外围。这九条分节柱与其后的 9条粗纤维的头端紧密相连。
尾部 分为 3部分:中段、主段和末段。主要结构是贯串于中央的轴丝。
中段 从远端中心粒到环之间称为中段,其长度在哺乳类中差异颇大,但结构大体相似。主要结构是轴丝和外围的线粒体鞘。
①轴丝:精子的运动器官,由远端中心粒形成,一直伸向精子的末段。精子轴丝的结构与动物的鞭毛(或纤毛)相似,基本组成上都是 9+2型,即位于中央的两条是单根的微管,四周是9条成双的微管(二联体)。
轴丝外的纤维鞘由9条粗纤维组成。它们与颈部9条分节柱相连。这是哺乳类精子特有的,因此人们把哺乳类精子列为9+9+2型(图3),尽管其大小形状在各种动物有所不同。鸟类和有些无脊椎动物的精子中也有类似的结构。
②线粒体鞘或称线粒体螺线:线粒体相互连接,螺旋地包在粗纤维之外,故称线粒体鞘。它是在精子形成时线粒体汇集到一起彼此相互合并而成的连续结构。各哺乳类螺线的圈数差别很大,少的十来圈,多的达几百圈。
③环:位于中段的后端。在线粒体鞘最后一圈之后,是该处质膜向内转折而成。为哺乳类精子所特有,可能与防止精子运动时线粒体后移有关。
主段 尾部最长的部分,由轴丝和其外的筒状纤维鞘组成。纤维鞘中有两条纤维突起成纵形嵴,由于纵形嵴刚好分别位于背腹二侧,以致使精子尾部截面呈卵圆形。
末段 随主段进入末段,纤维鞘逐渐变细而消失。
非典型精子结构
共同特点是缺乏鞭毛,但是其形状却相差悬殊。这种精子在无脊椎动物中分布很广。有的,如低等甲壳类的精子,是圆球状或带状,比典型精子更象一个细胞。有的则长出许多细而长的突起,可能有助于附着,使其在孵化腔中不至被水流冲掉;高等甲壳类的精子形状较为复杂,除细长的突起外,还有几丁质的囊。线虫纲动物的非典型精子比较简单的象变形虫,马副蛔虫的精子则具有独特的晶状体。由于非典型精子大多形状简单,使人容易认为它们是停留在精子形成的早期阶段。但是经过比较研究,例如在有些精子中仍然可以看到中心粒以及由此生出的鞭毛(虽然未长出体外)。一般认为,这种简单形状是退化而来的次生性状。
精子发生
从精原干细胞?⒂拥墓蹋夤淘诟叩榷镏写笾孪嗨疲际窃谪和璧那腹埽ㄉ」埽┠诮械摹?
哺乳类的精原细胞可以作为干细胞增生繁殖,产生新的干细胞并能产生进行分化的细胞;这不仅保存了干细胞本身的世代,并且能源源不断地产生分化细胞,再由后者产生初级精母细胞。至于它们经过多少次有丝分裂产生出初级精母细胞,各类动物不尽相同。除最早的精原细胞以外,在精子发生过程中每次有丝分裂之后,细胞质都不完全分开,细胞之间有间桥相连,形似合胞体(图4)。这可能有利于细胞之间维持严格的同步性,有利于同时产生大量的精子。
精母细胞产生后,进入生长期,体积增大,此时称为初级精母细胞。它们的细胞核合成 DNA,染色质发生一系列的复杂变化,准备第一次成熟分裂(见减数分裂)。发裂后每个初级精母细胞产生两个单倍体的次级精母细胞。后者不复制 DNA,经过较短时间的停留,就进入第二次成熟分裂,形成两个精子细胞。所以一个初级精母细胞经过两次成熟分裂形成四个单倍体精子细胞。在各种动物精子发生中只有这个阶段大体相似。
由精子细胞成为精子的过程叫精子形成,也称为精子变态。这一过程极为复杂,主要是细胞核和细胞器发生急剧变化。细胞核中核蛋白成分发生显著变化,导致染色质致密化,核的体积缩小。在有些动物中鱼精蛋白取代了核中的组蛋白。高尔基器、中心粒和线粒体变化也很大。由一系列小泡所组成的高尔基器,其中有些小泡中产生顶体前颗粒。小泡不断扩大合并成较大液泡,覆盖于核的前端(图5),并进一步演变为帽状顶体。顶体前颗粒也汇集成较大的、显示粘多糖反应的顶体颗粒。中心粒在高尔基器变化的同时一分为二并相互移开,近端中心粒位于核后端的凹陷中,远端中心粒形成鞭毛的轴丝,以后消失。线粒体则重新分布,围绕着轴丝形成螺旋。这种运动与线粒体周围的肌动蛋白纤维有关。在这些变化的同时,大部分细胞质聚集到颈部,仅通过一细柄与精子相连。这时精子的尾部已从后端长出,当此细柄断开时,精子即与细胞质(称为残体)脱离进入到曲精细管的管腔中。
精子发生的全部过程与支持细胞有密切关系。曲精细管上皮由长柱状、底部较宽顶部较窄的支持细胞和生殖细胞组成。精母细胞处于支持细胞与曲精细管的基膜之间,二者之间有桥粒样连接相连(见细胞间连结)。进行成熟分裂的精母细胞逐渐向精细管的管腔移动,这主要是靠支持细胞本身的运动(可能与其中丰富的微丝有关)。各级精母细胞位于支持细胞的凹窝中,或两个相邻支持细胞形成的凹窝中,并且与支持细胞的细胞膜形成间隙连接,借此相连。各级精母细胞按照成熟的程度排列,处于变态中的精子细胞更靠近顶部。在这里,支持细胞通过两种结构与精子细胞发生联系:一是外质中的肌动蛋白纤维形成的连接结构;另一种是球带状复合体,后者是支持细胞的顶部表面和精子细胞的头部表面共同形成的。由于从精原细胞不断产生精母细胞进行置换,因而产生出这样精确的排列(图6)。
精子发生的激素调控 精子发生受垂体分泌的促黄体生成素 (LH)、促滤泡生成素(FSH)以及睾丸间质细胞分泌的睾酮调控。间质细胞又称Leydig细胞,位于各曲精细管之间的间质组织中,它们合成和分泌睾酮进入曲精细管,促进精子发生。睾酮的产生受垂体释放的LH的控制。垂体分泌的 FSH则刺激支持细胞合成和分泌雄激素结合蛋白,它与睾酮有强的亲和能力,以保持睾酮在曲精细管中的浓度,维持它对精子发生的作用。此外FSH还能直接启动精原细胞分裂和激发早期生殖细胞的发育。
精子发生中的基因调控 精子发生期间染色质浓缩,使 DNA不能够转录,这种情况在精子完全形成之前完成。各种动物在精子形成中转录停止的时刻不完全相同。例如在果蝇,RNA合成在初级精母细胞期间停止,而在小鼠,在成熟分裂后不久的精子细胞中还在进行,要在细胞核开始伸长时才完全停止。
精子的形成依赖蛋白质合成,既然 RNA合成已停止,精子变态所需蛋白质合成必然要依赖较早时期产生并储藏起来的到精子变态时才进行转译的稳定RNA,这是发生在转录后水平上的调控,是延迟基因表达的机制。如在精子细胞质中合成并进入细胞核取代组蛋白的鱼精蛋白,其基因在初级精母细胞中就已转录。在核内合成的 RNA转移到细胞质中,与蛋白质结合形成 16~18S的核蛋白颗粒,并以这种形式储藏在细胞质内直到精子细胞时期。在这种转录和转译之间有较长时间间隔的例子中,对控制转录后基因表达的因素尚缺乏了解。类似的现象可能也会在其他类型细胞的终末分化中遇到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条