1) interferential quomodo
扰动方式
1.
The detailed interferential quomodo of the coexisting substances were concluded.
采用荧光光谱、圆二色光谱(CD)和紫外光谱研究了6种典型共存物分别对中药有效成分七叶内酯-BSA结合的扰动,得到含共存物时七叶内酯-BSA分子间结合的KP、KA、n和r等参数,归纳了共存物的具体扰动方式。
2) perturbation equation
扰动方程
1.
In the regular solution problem of the perturbation equation,the solution of convergence order is important.
在扰动方程的正则化求解问题中,解的收敛性估计是十分重要的。
2.
This paper gives some new and easy to test criteria, can discriminate invertibility of A class of nondiagonally dominant matrices, and gives the upper bound of |A-1| and the error estimate of solving relevant perturbation equations (A + A)(x + 6x) = b+b by simple and convenient method.
本文给出一些新的、易于检验的判别定理,能通过简便的方法来判别一类非对角占优矩阵A的可逆性、给出‖A~(-1)‖的上界以及解相应扰动方程组(A+δA)(X+δx)=b+δb的误差估计,具有较好的实用价值。
3) perturbed equations
扰动方程
1.
An iterative method is designed to advance the Ishikawa iteration and solve perturbed equations of accretive operators.
主要研究了用迭代法求解增生算子紧扰动方程 。
4) perturbation method
扰动方法
1.
Lamè function and perturbation method to nonlinear evolution equations;
Lam函数和非线性演化方程的扰动方法
2.
In the paper,perturbation method is applied to the parameter identification for convection diffusion equation and Tikhonov′s regularization method is used to solve the system of linear equations which has been obtained.
采取扰动方法确定对流扩散方程的未知参数,并应用正则化方法求解所得到的线性方程组,具有计算稳定,易于实行等优点。
3.
Based on the Lamé equation and new Lamé functions, the perturbation method and Jacob i elliptic function expansion method are applied to get the multi-order exact s o lutions of a kind of nonlinear evolution equations (such as mKdV equation, nonli near Klein-Gordon equation Ⅱ etc.
在Lamé方程和新的Lamé函数的基础上 ,应用小扰动方法和Jacobi椭圆函数展开法求解一类非线性演化方程(如mKdV方程 ,非线性Klein Gordon方程Ⅱ等 ) ,获得多种新的多级准确解 。
5) disturbed equation
扰动方程
1.
This paper was based on the optimizing regular solution of general disturbed equation in paper [1], then discussed its asymptotic convergence.
针对文献 [1]中所给一般扰动方程的Tikhonov优化正则化解法 ,讨论了该解的渐进收敛
2.
We discuss the stability of the solutions of the singalar integral equations with Cauchy kernel in L 2 ω and get the estimation of the solutions of the disturbed equations, and prove the continuous dependence of the solutions for known functions.
讨论了在区间[-1,1]上带Cauchy核奇异积分方程在L2ω[-1,1]中解的稳定性,获得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖
3.
This article gives the stability conditions,gets the estimation of the solutionfor the disturbed equation, and proves the continuing dependence of the solution for theknown functions.
讨论了H(ω)上带Hilbert核奇异积分方程解的稳定性,给出了稳定性条件,推得了扰动方程解的估计,证明了方程的解对于已知函数的连续依赖性。
6) variance pertubation
方差扰动
补充资料:油气田开发方式(见油气田生产方式)
油气田开发方式(见油气田生产方式)
development pattern of oil and gas field:see recovery pattern of oil and gas field
a垃d gas月e卫d) 、‘。尸卫Jlent见油气田小冰、*pa士teroof ojl
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条