1) Fat metabolism
脂肪代谢
1.
Effects of tea polyphenols supplement on fat metabolism of rat in swimming;
茶多酚补充对游泳大鼠脂肪代谢的影响及机理研究
2.
Effect of taurine on fat metabolism of alcoholic fat liver in rats;
牛磺酸对酒精性脂肪肝大鼠脂肪代谢的影响
2) lipid metabolism
脂肪代谢
1.
Effect of acupuncture on lipid metabolism in Simple obese rat;
针刺对单纯性肥胖大鼠脂肪代谢的影响
2.
Effect of betaine on lipid metabolism of pigs;
甜菜碱对生长猪脂肪代谢的影响
3.
Effects of fructooligosaccharides on the performance,lipid metabolism,immune and endocrine function in laying quails;
寡果糖对蛋用鹌鹑生产性能、脂肪代谢、免疫和内分泌机能的影响
3) adipose metabolism
脂肪代谢
1.
Effect of dietary addition cysteamine and daidzein on adipose metabolism in broilers;
半胱胺、大豆黄酮对肉仔鸡脂肪代谢的影响
2.
Effects of carnitine on adipose metabolism in Chinese soft-shelled turtles;
肉碱对中华鳖脂肪代谢的影响
3.
Effect of Dietary Addition Cysteamine and Daidzein on Adipose Metabolism in the Broilers;
半胱胺及大豆黄酮对肉鸡脂肪代谢的影响
4) Lipometabolism
脂肪代谢
1.
Pyruvate is a mediate product of glycometobolism and lipometabolism and amino acid metabolism.
本研究分别以雄性游泳运动大鼠和男子散手运动员为研究对象,观察了丙酮酸补充对运动机体身体成份和脂肪代谢的影响。
5) fat metabolism
代谢脂肪
6) fatty acid metabolism
脂肪酸代谢
1.
Role of peroxisome proliferator-activated receptors and their agonists in fatty acid metabolism and insulin resistance;
PPAR及其激动剂与脂肪酸代谢及胰岛素抵抗
2.
This paper re-viewed multi-kinds of the research approach of cold-resistance of plants including the characteristic and function of antifreeze protein genes and the fatty acid metabolism pathway and genetic engineering of anti-oxidase corr-elation with cold-resistance,and probed into the research direction for the fut.
文章综述了几种植物抗寒基因的研究途径:抗冻蛋白基因的特性与功能研究、与抗寒相关的脂肪酸代谢途径和抗氧化酶基因工程的研究概况,并探讨了今后的研究方向。
补充资料:脂肪代谢
脂肪在体内的降解和合成过程及其调节。
降解代谢 动物体中脂肪的降解代谢须先将贮存形式的脂肪,即三酰基甘油,转化为游离的脂肪酸和二酰基甘油。此一转化过程是由脂肪细胞中"对激素敏感的三酰甘油脂肪酶"(在激素的刺激下被活化)催化完成的。接着,在二酰甘油脂肪酶和单酰甘油脂肪酶相继作用下又产生二分子脂肪酸和甘油。释放的游离脂肪酸在血液中与血浆白蛋白结合为复合物,输送到其他组织中进行代谢。
脂肪酸的氧化 脂肪酸通过β-?趸梢阴8窤,后者进入三羧酸循环,最终成为水和二氧化碳。在此过程中释放的能量,主要以腺苷三磷酸(ATP)的形式贮存体内。脂肪酸的β-氧化包括下列步骤:①脂肪酸的活化,脂肪酸在ATP、辅酶A和镁离子存在下,经脂酰辅酶A合成酶催化产生脂酰辅酶A,脂酰辅酶A需靠线粒体内膜两侧的肉碱脂酰转移酶把脂酰基运到线粒体基质(β-氧化降解区域) 。②脂酰辅酶A的氧化脱氢由脂酰辅酶A脱氢酶催化,产生反式Δ2烯脂酰辅酶A,此酶的辅基为黄素腺嘌呤二核苷酸(FAD)。③烯脂酰辅酶A水合酶将反式Δ2烯脂酰辅酶A转变成L(+)-3-羟脂酰辅酶A。④L(+)-3-羟脂酰辅酶A经L(+)-3-羟脂酰辅酶A脱氢酶催化生成 3-酮脂酰辅酶A,电子受体为氧化型辅酶I(NAD+)。⑤上述产物经3-酮脂酰辅酶A硫解酶裂解生成乙酰辅酶A和缩短了两个碳原子的脂酰辅酶A。
如此循环,脂酰辅酶A经受多次按次序重复的氧化、水合、氧化、硫解诸反应,每次切掉两个碳原子直至脂肪酸分子完全转变成乙酰辅酶A为止。如棕榈酸经过β-氧化降解产生129个ATP分子。和它等量的葡萄糖只产生96个ATP分子相比,脂肪酸释放的能量增加约三分之一。
酮体代谢 长链脂肪酸在肝脏中经β-氧化产生乙酰辅酶A除直接进入三羧酸循环进行氧化外,又能在肝脏和肾脏中两两缩合生成乙酰乙酰辅酶A,然后转变成乙酰乙酸和D(-)3-羟丁酸,乙酰乙酸也能自发脱羧生成少量丙酮,临床上把这三种物质总称为酮体。乙酰乙酸和D(-)3-羟丁酸通过血流送到肌肉和脑等肝外组织,被利用作为代谢燃料供能。肝外组织氧化酮体相当快,正常情况下,血液中酮体含量很少。但糖尿病患者或长期禁食时,机体需动员大量脂肪酸,肝脏氧化脂肪酸生成的酮体超过肝外组织所能利用的限度,以致血液内堆集过高浓度的酮体。在临床上,把这种代谢紊乱称为酮血症,患者尿液排出大量酮体,即酮尿症。体内积存过多乙酰乙酸和D(-)3-羟丁酸会造成酸中毒。
合成代谢 脂肪酸的生物合成 脂肪酸合成所需的碳源完全来自乙酰辅酶 A。长链饱和脂肪酸的全程合成包括两个酶系:①乙酰辅酶A羧化酶。辅基为生物素。乙酰辅酶A的羧化反应是脂肪酸合成的关键限速步骤,分两步进行:首先消耗一分子ATP形成1′-N-羧基生物素酶,然后此分子中的活化的二氧化碳转给乙酰辅酶 A产生丙二酸单酰辅酶 A。反应式如下:
②脂肪酸合成酶是从引物乙酰辅酶A和丙二酸单酰辅酶A合成长链饱和脂肪酸的酶系。不同的生物体的脂肪酸合成酶所催化的反应相同,但其组合结构不同。细菌和高等植物的合成酶复合体能解离成为具有活性的单体酶。酵母、哺乳动物和鸟类的合成酶是由一个或多个大集合体组成的多酶复合物。脂肪酸的合成始于乙酰辅酶 A与酰基载体蛋白(ACP)的巯基作用形成乙酰 S·ACP;然后乙酰基再转移到另一个单体酶 3-酮酰基(ACP)合成酶的半胱氨酸的巯基上形成"乙酰-S-酶",释放出ACP接受丙二酸单酰基形成丙二酸单酰·S·ACP。下一步缩合反应是乙酰 -S-酶将乙酰基转移到丙二酸单酰基的第二个碳原子上产生乙酰乙酰·S·ACP,丙二酸单酰基上的自由羧基以二氧化碳形式释放。然后乙酰乙酰·S·ACP再经"还原"、"脱水"和第二次"还原"诸反应最后合成丁酰·S·ACP,完成第一轮延伸反应。 如此重复"缩合、还原、脱水、还原",经过七次按次序的连续循环,每一轮延伸两个碳原子,最后形成棕榈酰·S·ACP经硫酯酶催化形成终点产物游离的棕榈酸。棕榈酸是所有其他长链饱和及不饱和脂肪酸的前体。动物体内有含细胞色素b5的氧化酶系将棕榈酸和硬脂酸去饱和形成棕榈油酸和油酸,反应需要分子氧和还原辅酶Ⅱ(NADPH)。 动植物都能在脂肪酸链内引入不止一个双键,去饱和酶催化此反应,但动物不能从油酸合成亚油酸和亚麻酸,这些脂肪酸必须从植物获得。
脂肪的生物合成 动物肝脏和脂肪组织是合成脂肪的主要场所。小肠粘膜细胞将食物脂肪消化吸收以后也能重新合成脂肪。高等植物也能合成大量脂肪贮存在种子内。动植物合成脂肪的两个主要前体为脂酰辅酶 A和甘油-3磷酸,甘油3-磷酸主要来自糖酵解;另外,甘油激酶也能将甘油活化产生甘油-3-磷酸。甘油-3-磷酸经酰基转移酶引入两个脂酰基生成L-磷脂酸。后者被磷脂酸磷酸酯酶水解生成1,2-二酰甘油,再酰化就合成三酰甘油(脂肪)。食物脂肪在小肠内经乳化和胰脂肪酶的作用产生脂肪酸和2-单酰甘油;2-单酰甘油经重新酰化直接合成三酰甘油不需要通过磷脂酸中间物。
调节 动物的脂肪代谢,受着不同激素的影响。脂肪动员的第一步,就依赖着"激素敏感的脂肪酶",例如肾上腺素通过一系列的作用,使无活性的脂肪酶转化为有活性的酶,因而促进脂肪水解。除肾上腺素外,其他如去甲肾上腺素、生长激素、胰高血糖素、促肾上腺皮质激素、甲状腺素、促甲状腺激素等均促进脂肪水解。胰岛素、前列腺素E能抑制脂肪的水解。
降解代谢 动物体中脂肪的降解代谢须先将贮存形式的脂肪,即三酰基甘油,转化为游离的脂肪酸和二酰基甘油。此一转化过程是由脂肪细胞中"对激素敏感的三酰甘油脂肪酶"(在激素的刺激下被活化)催化完成的。接着,在二酰甘油脂肪酶和单酰甘油脂肪酶相继作用下又产生二分子脂肪酸和甘油。释放的游离脂肪酸在血液中与血浆白蛋白结合为复合物,输送到其他组织中进行代谢。
脂肪酸的氧化 脂肪酸通过β-?趸梢阴8窤,后者进入三羧酸循环,最终成为水和二氧化碳。在此过程中释放的能量,主要以腺苷三磷酸(ATP)的形式贮存体内。脂肪酸的β-氧化包括下列步骤:①脂肪酸的活化,脂肪酸在ATP、辅酶A和镁离子存在下,经脂酰辅酶A合成酶催化产生脂酰辅酶A,脂酰辅酶A需靠线粒体内膜两侧的肉碱脂酰转移酶把脂酰基运到线粒体基质(β-氧化降解区域) 。②脂酰辅酶A的氧化脱氢由脂酰辅酶A脱氢酶催化,产生反式Δ2烯脂酰辅酶A,此酶的辅基为黄素腺嘌呤二核苷酸(FAD)。③烯脂酰辅酶A水合酶将反式Δ2烯脂酰辅酶A转变成L(+)-3-羟脂酰辅酶A。④L(+)-3-羟脂酰辅酶A经L(+)-3-羟脂酰辅酶A脱氢酶催化生成 3-酮脂酰辅酶A,电子受体为氧化型辅酶I(NAD+)。⑤上述产物经3-酮脂酰辅酶A硫解酶裂解生成乙酰辅酶A和缩短了两个碳原子的脂酰辅酶A。
如此循环,脂酰辅酶A经受多次按次序重复的氧化、水合、氧化、硫解诸反应,每次切掉两个碳原子直至脂肪酸分子完全转变成乙酰辅酶A为止。如棕榈酸经过β-氧化降解产生129个ATP分子。和它等量的葡萄糖只产生96个ATP分子相比,脂肪酸释放的能量增加约三分之一。
酮体代谢 长链脂肪酸在肝脏中经β-氧化产生乙酰辅酶A除直接进入三羧酸循环进行氧化外,又能在肝脏和肾脏中两两缩合生成乙酰乙酰辅酶A,然后转变成乙酰乙酸和D(-)3-羟丁酸,乙酰乙酸也能自发脱羧生成少量丙酮,临床上把这三种物质总称为酮体。乙酰乙酸和D(-)3-羟丁酸通过血流送到肌肉和脑等肝外组织,被利用作为代谢燃料供能。肝外组织氧化酮体相当快,正常情况下,血液中酮体含量很少。但糖尿病患者或长期禁食时,机体需动员大量脂肪酸,肝脏氧化脂肪酸生成的酮体超过肝外组织所能利用的限度,以致血液内堆集过高浓度的酮体。在临床上,把这种代谢紊乱称为酮血症,患者尿液排出大量酮体,即酮尿症。体内积存过多乙酰乙酸和D(-)3-羟丁酸会造成酸中毒。
合成代谢 脂肪酸的生物合成 脂肪酸合成所需的碳源完全来自乙酰辅酶 A。长链饱和脂肪酸的全程合成包括两个酶系:①乙酰辅酶A羧化酶。辅基为生物素。乙酰辅酶A的羧化反应是脂肪酸合成的关键限速步骤,分两步进行:首先消耗一分子ATP形成1′-N-羧基生物素酶,然后此分子中的活化的二氧化碳转给乙酰辅酶 A产生丙二酸单酰辅酶 A。反应式如下:
②脂肪酸合成酶是从引物乙酰辅酶A和丙二酸单酰辅酶A合成长链饱和脂肪酸的酶系。不同的生物体的脂肪酸合成酶所催化的反应相同,但其组合结构不同。细菌和高等植物的合成酶复合体能解离成为具有活性的单体酶。酵母、哺乳动物和鸟类的合成酶是由一个或多个大集合体组成的多酶复合物。脂肪酸的合成始于乙酰辅酶 A与酰基载体蛋白(ACP)的巯基作用形成乙酰 S·ACP;然后乙酰基再转移到另一个单体酶 3-酮酰基(ACP)合成酶的半胱氨酸的巯基上形成"乙酰-S-酶",释放出ACP接受丙二酸单酰基形成丙二酸单酰·S·ACP。下一步缩合反应是乙酰 -S-酶将乙酰基转移到丙二酸单酰基的第二个碳原子上产生乙酰乙酰·S·ACP,丙二酸单酰基上的自由羧基以二氧化碳形式释放。然后乙酰乙酰·S·ACP再经"还原"、"脱水"和第二次"还原"诸反应最后合成丁酰·S·ACP,完成第一轮延伸反应。 如此重复"缩合、还原、脱水、还原",经过七次按次序的连续循环,每一轮延伸两个碳原子,最后形成棕榈酰·S·ACP经硫酯酶催化形成终点产物游离的棕榈酸。棕榈酸是所有其他长链饱和及不饱和脂肪酸的前体。动物体内有含细胞色素b5的氧化酶系将棕榈酸和硬脂酸去饱和形成棕榈油酸和油酸,反应需要分子氧和还原辅酶Ⅱ(NADPH)。 动植物都能在脂肪酸链内引入不止一个双键,去饱和酶催化此反应,但动物不能从油酸合成亚油酸和亚麻酸,这些脂肪酸必须从植物获得。
脂肪的生物合成 动物肝脏和脂肪组织是合成脂肪的主要场所。小肠粘膜细胞将食物脂肪消化吸收以后也能重新合成脂肪。高等植物也能合成大量脂肪贮存在种子内。动植物合成脂肪的两个主要前体为脂酰辅酶 A和甘油-3磷酸,甘油3-磷酸主要来自糖酵解;另外,甘油激酶也能将甘油活化产生甘油-3-磷酸。甘油-3-磷酸经酰基转移酶引入两个脂酰基生成L-磷脂酸。后者被磷脂酸磷酸酯酶水解生成1,2-二酰甘油,再酰化就合成三酰甘油(脂肪)。食物脂肪在小肠内经乳化和胰脂肪酶的作用产生脂肪酸和2-单酰甘油;2-单酰甘油经重新酰化直接合成三酰甘油不需要通过磷脂酸中间物。
调节 动物的脂肪代谢,受着不同激素的影响。脂肪动员的第一步,就依赖着"激素敏感的脂肪酶",例如肾上腺素通过一系列的作用,使无活性的脂肪酶转化为有活性的酶,因而促进脂肪水解。除肾上腺素外,其他如去甲肾上腺素、生长激素、胰高血糖素、促肾上腺皮质激素、甲状腺素、促甲状腺激素等均促进脂肪水解。胰岛素、前列腺素E能抑制脂肪的水解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条