1) Density operator
密度算符
1.
Discussion on the particle density and granule current density operators of several kinds;
几类粒子密度算符和粒子流密度算符的讨论
2.
Broad nonlinear equal-order Nth power Matrix combination of q-mode light field density operator and hamiltion operator;
q模光场密度算符和哈密顿算符的矩阵合成
3.
Methods The distance between two different multimode odd coherent state light fields was analyzed theoretically by the method of distance functions of density operator.
方法采用两个不同态的密度算符距离函数方法,从理论上研究两个不同多模奇相干态光场之间的距离。
2) current density operator
流密度算符
1.
Discussion on the particle density and granule current density operators of several kinds;
几类粒子密度算符和粒子流密度算符的讨论
2.
Using the way of inducting the local density operator, the local current density operator, and the operator’s interplay, we can understand the quantum mechanics continuous equation of the free particles’ systems and the particles’ systems in electromagnetic respectively.
引入局域密度算符和局域流密度算符 ,并用算符作用方法 ,分别对自由粒子体系和电磁场粒子体系给出了量子力学连续性方程的一种新的推导方法 。
3) distance between density operators
密度算符间距
1.
The properties of state evolution of the atom,field,and atom-field system in the system of two two-level atoms inside a phase-damping cavity interaction with a coherent field under the condition of large detuning are investigated by using the distance between density operators.
在大失谐条件下,运用密度算符间距研究了一位于相位损耗腔中两个二能级原子与相干光场相互作用系统中原子、光场及系统各量子态随时间的演化规律。
2.
The time evolution of distance between density operators in degenerate Raman two- photon coupling system inside a phase-damping are investigated .
研究了位于相位损耗腔中简并双光子拉曼耦合系统中密度算符的时间演化,讨论了相位损耗和光场平均光子数对密度算符间距的影响。
4) reduce density operator
约化密度算符
5) particle density operator
粒子密度算符
6) granule current density operator
粒子流密度算符
1.
Discussion on the particle density and granule current density operators of several kinds;
几类粒子密度算符和粒子流密度算符的讨论
补充资料:密度算符
分子式:
CAS号:
性质: 以密度矩阵为核的一个积分算符。例如,一阶密度算符ρ1是以ρ1(x1|x′1)为核的一个积分算符,当它作用在函数φ(x1)上时得出的新函数φ′(x1)为φ′(x1)=ρ1φ(x1)=∫(x1|x′1) φ′(x1)dx1亦即把被作用函数的变量改变x′1,乘上积分核ρ1(x1|x′1)后对x′1积分,得到x1的一个新函数。
CAS号:
性质: 以密度矩阵为核的一个积分算符。例如,一阶密度算符ρ1是以ρ1(x1|x′1)为核的一个积分算符,当它作用在函数φ(x1)上时得出的新函数φ′(x1)为φ′(x1)=ρ1φ(x1)=∫(x1|x′1) φ′(x1)dx1亦即把被作用函数的变量改变x′1,乘上积分核ρ1(x1|x′1)后对x′1积分,得到x1的一个新函数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条