1) Tetrahedral site and octahedral site
四面体与八面体间隙位
2) octahedral iaterstice
八面体间隙
3) tetrahedral gap
四面体间隙
1.
Fitting of tetrahedral gap of the intermeshing twin-screw;
常规螺杆元件四面体间隙的拟合
2.
The geometry of intermeshing co- rotating twin- screw, especially the shape and volume of the tetrahedral gap of the equipment were studied throughly and the mathematical model of the volume of the gap was proposed.
对啮合同向旋转双螺杆几何学和无间隙全啮合双螺杆四面体间隙的几何形状与体积做了详细的探讨,并建立了四面体间隙的数学模型。
4) volume of tetrahedral gap
四面体间隙体积
1.
By studying the shape and geometrical properties of tetrahedral gap in the intermeshing co rotating twin screw, a mathematical model to precisely calculate the volume of tetrahedral gap has been developed in this paper, which was simplified by approximation using a third order spline function, served as a powerful tool for designing and deepening research into twin screw.
通过剖析啮合同向双螺杆四面体间隙的几何性状,建立了四面体间隙体积的数学模型,准确地求出了四面体间隙的体积,并用三次样条函数近似,使得模型得以简化,为设计和深入研究双螺杆挤出机提供了有力的工具。
5) octahedral gap
八面体空隙
1.
conducted a more detailed introduction for tetrahedral gap and octahedral gap arrangementinformed in the cosest packing of crystal structure, indicated the gap center location and coordinates, listed the Chemistry Competition related content knowledge in recent years.
对晶体中等径圆球密堆积形成的四面体空隙与八面体空隙排布,进行了较为详细的介绍,标明了空隙中心的位置与坐标,并列出了近年来高中化学竞赛中相关知识的考查内容。
6) tetrahedral pore
四面体孔隙
补充资料:四面体数
四面体数或三角锥体数是可以排成底为三角形的锥体(即四面体)的数。四面体数每层为三角形数,其公式是首n个三角形数之和,即n(n + 1)(n + 2) / 6。其首几项为:1, 4, 10, 20, 35, 56, 84, 120...(oeis:a000292)
四面体数的奇偶排列是“奇偶偶偶”。
1878年,a.j. meyl证明只有3个四面体数同时为平方数:1, 4, 19600。唯一同时是四面体数和正方锥数的数是1(beukers (1988))。
它们可以在杨辉三角每横行从右到左或左到右的第4项找到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。