2) replacement kinetics
取代动力学
1.
In this paper the ion replacement kinetics process of Alginate Chitosan Alginate(ACA) and the mutual replacement process of Calcium Alginate(A Ca) and Alginate Chitosan Alginate Calcium(ACA Ca) gel beads for Pb 2+ are studied by mobile boundary model.
用动边界模型描述了海藻酸 壳聚糖 海藻酸 (ACA)离子取代凝胶对 2价离子的取代动力学过程 。
3) kinetics
[英][ki'netiks] [美][kɪ'nɛtɪks]
反应动力学
1.
Comparison of hydrolysis kinetics of different vegetable oils in near-critical water;
不同植物油脂在近临界水中水解反应动力学的比较
2.
Decomposition kinetics of fructose catalyzed by organic acids in high temperature liquid water;
高温液态水中有机酸对果糖分解反应动力学的影响
3.
Study on the kinetics of dissolving reaction of phosphate ore under microwave-induced enhancement;
微波作用磷矿分解反应动力学研究
4) reaction dynamics
反应动力学
1.
Reaction Dynamics and Statistics for A_aB_b Type Hyperbranched Polymers;
A_aB_b型超支化高分子的反应动力学和统计力学
2.
Chemical reaction dynamics is one of the fundamental research fields in chemistry.
化学反应动力学是化学领域最基础的学科之一,量子态分辨的基元化学反应动力学在最为基本的原子与分子的层次上对化学反应的机制提供深刻的理解。
3.
The optimal reaction conditions and catalysis reaction dynamics catalyzed synthesis of propyl lactate is studied with the rare earth solid superacid as catalyst.
为了探讨α-羟基酸酯化反应机理,制备了一种稀土固体超强酸催化剂SO42-/TiO2-CeO2,并对其催化合成乳酸丙酯的最适宜反应条件和催化反应动力学进行了研究。
5) reaction kinetic
反应动力学
1.
The effects of the different substrate,temperature,pH,substrate concentration and inhibitors on PPO were studied and the reaction kinetic equation was established.
以邻苯二酚为底物,采用分光光度法在420nm处测定鸭梨多酚氧化酶(PPO)的活性,研究了不同底物、温度、pH值和底物浓度对其活性的影响,并建立了酶促褐变反应动力学方程,探讨了柠檬酸、EDTA、亚硫酸氢钠和抗坏血酸四种抑制剂对鸭梨酶促褐变的抑制效果。
2.
The reaction kinetic was defined as SN2 by determining acid and epoxy values.
0,催化剂用量为总投料的1%,最后通过酸值和环氧值的测定,确定反应动力学为S_N2历程。
3.
The reaction kinetic of oxalic acid and basic nitrogen compound of coking gas oil was investigated.
研究了乙二酸与焦化蜡油中碱性氮化物的反应动力学规律 ,考察了乙二酸浓度、碱性氮化物浓度、反应温度等因素对反应速率的影响 ,在 6 0~ 12 0℃内分别测定了相应的动力学数据 。
6) kinetic
[英][kɪ'netɪk] [美][kɪ'nɛtɪk]
反应动力学
1.
Photoelectrocatalytic degradation kinetic of humic acid on boron doped TiO_2/Ti catalyst;
腐殖酸在掺硼TiO_2/Ti催化剂上光电催化反应动力学
2.
The kinetics of reaction of AHA with nitrous acid was studied in HClO4 and HNO3 medium.
分别在HClO4和HNO3体系中用分光光度法研究了乙异羟肟酸(AHA)与HNO2的反应动力学,得到其反应动力学速率方程式为:—dc(HNO2)/dt=k。
3.
In kinetics study of complex reaction, cubic spline functions were applied to estimate the initial iteration rate constants for various chemical reactions under a constant temperature with the composition data of the components in the reaction system vs.
在复杂反应动力学研究中,由等温反应体系中各组分随时间变化的数据,采用三次样条法估计各种化学反应的动力学速率常数迭代初值;并结合应用实例,检验了该方法在锁定动力学常数迭代初值范围的有效性。
补充资料:反应动力学
研究化学反应速率以及各种因素对化学反应速率影响的学科。传统上属于物理化学的范围,但为了满足工程实践的需要,化学反应工程在其发展过程中,在这方面也进行了大量的研究工作。绝大多数化学反应并不是按化学计量式(见化学计量学)一步完成的,而是由多个具有一定程序的基元反应(一种或几种反应组分经过一步直接转化为其他反应组分的反应,或称简单反应)所构成。反应进行的这种实际历程称反应机理。
一般说来,化学家着重研究的是反应机理,并力图根据基元反应速率的理论计算来预测整个反应的动力学规律。化学反应工程工作者则主要通过实验测定,来确定反应物系中各组分浓度和温度与反应速率之间的关系,以满足反应过程开发和反应器设计的需要。
反应速率 反应速率ri为反应物系中单位时间、单位反应区内某一组分i的反应量,可表示为:
反应区体积可以采用反应物系体积、催化剂质量或相界面面积等,视需要而定。同一反应物系中,不同组分的反应速率之间存在一定的比例关系,服从化学计量学的规律。例如对于反应:
(1)有
(2)对于反应物,反应速率ri前用负号;对于反应产物,ri前用正号。
反应速率方程 反应速率方程表示反应温度和反应物系中各组分的浓度与反应速率之间的定量关系,即:
(3)式中C为反应物的浓度向量;T为反应温度(绝对温度)。大量实验表明,温度和浓度通常是独立地影响反应速率的,故式(3)可改写为:
(4)式(4)中fT(T)即反应速率常数k,表示温度对反应速率的影响。对多数反应,k服从阿伦尼乌斯关系(即1889年瑞典人S.阿伦尼乌斯创立的反应动力学方程):
(5)式中A为频率因子,或称指前因子;E为反应活化能;R为摩尔气体常数。频率因子为与单位时间、单位体积内反应物分子碰撞次数有关的参数;反应活化能表示发生反应必须克服的能峰,活化能高则反应难于进行,活化能低,则易于进行。频率因子和活化能两者共同决定一定温度、浓度条件下的反应速率。
式(4)中fC(C)表示浓度对反应速率的影响,通常可表示成幂函数形式或双曲线形式。对反应 (1)幂函数型的反应速率方程可写成:
(6)式中n1和n2分别为反应组分A和B的反应级数;n1+n2为反应的总级数,或简称反应级数。
双曲线型方程常用于气固相催化反应动力学的研究。例如反应A匑R是由组分A的分子吸附、表面反应和组分R的分子脱附等步骤组成,当表面反应为控制步骤时,其速率方程式可写作:
(7)式中pA和pR分别为组分A和R的分压;k为包括吸附平衡常数在内的速率常数;kA和kR分别为组分A和R的吸附平衡常数;K为化学平衡常数。
应用动力学 着重研究工业反应器操作范围内反应速率和反应条件之间的定量关系。为此,发展了一系列动力学实验研究方法。
工业反应过程的特点是在化学反应的同时伴随着各种传递过程(见反应器传递过程)。在应用动力学研究中,传递过程的影响难以完全排除;或为应用方便,而有意识地模拟工业反应过程的传递条件,于是将传递过程的影响归并到反应动力学中去,从而得到一定传递过程条件下的表观动力学规律。与此对应,排除传递过程影响而得的反映化学反应本身规律的反应动力学称本征动力学。
动力学模型 按化学反应的不同特点和不同的应用要求,常用的动力学模型有:
① 基元反应模型 根据对反应体系的了解,拟定若干个基元反应,以描述一个复杂反应(由若干个基元反应组成的反应)。按照拟定的机理写出反应速率方程,然后通过实验来检验拟定的动力学模型,估计模型参数。这样得到的动力学模型称为基元反应模型。合成氨的链反应机理动力学模型即为一例。
② 分子反应模型 根据有关反应系统的化学知识,假定若干分子反应,写出其化学计量方程式。所假设的反应必须足以反映反应系统的主要特征。然后按标准形式(幂函数型或双曲线型)写出每个反应的速率方程。再根据等温(或不等温)动力学实验的数据,估计模型参数。这种方法已被成功地用于某些比较复杂的反应过程,例如乙烷、丙烷等烃类裂解。
③ 经验模型 从实用角度出发,不涉及反应机理,以较简单的数学方程式对实验数据进行拟合,通常用幂函数式表示。
对于有成千上万种组分参加的复杂反应过程(如石油炼制中的催化裂化),建立描述每种组分在反应过程中的变化的分子反应模型是不可能的。近年来发展了集总动力学方法,将反应系统中的所有组分归并成数目有限的集总组分,然后建立集总组分的动力学模型。集总动力学模型已成功地用于催化裂化、催化重整、加氢裂化等石油炼制过程。
一般说来,化学家着重研究的是反应机理,并力图根据基元反应速率的理论计算来预测整个反应的动力学规律。化学反应工程工作者则主要通过实验测定,来确定反应物系中各组分浓度和温度与反应速率之间的关系,以满足反应过程开发和反应器设计的需要。
反应速率 反应速率ri为反应物系中单位时间、单位反应区内某一组分i的反应量,可表示为:
反应区体积可以采用反应物系体积、催化剂质量或相界面面积等,视需要而定。同一反应物系中,不同组分的反应速率之间存在一定的比例关系,服从化学计量学的规律。例如对于反应:
(1)有
(2)对于反应物,反应速率ri前用负号;对于反应产物,ri前用正号。
反应速率方程 反应速率方程表示反应温度和反应物系中各组分的浓度与反应速率之间的定量关系,即:
(3)式中C为反应物的浓度向量;T为反应温度(绝对温度)。大量实验表明,温度和浓度通常是独立地影响反应速率的,故式(3)可改写为:
(4)式(4)中fT(T)即反应速率常数k,表示温度对反应速率的影响。对多数反应,k服从阿伦尼乌斯关系(即1889年瑞典人S.阿伦尼乌斯创立的反应动力学方程):
(5)式中A为频率因子,或称指前因子;E为反应活化能;R为摩尔气体常数。频率因子为与单位时间、单位体积内反应物分子碰撞次数有关的参数;反应活化能表示发生反应必须克服的能峰,活化能高则反应难于进行,活化能低,则易于进行。频率因子和活化能两者共同决定一定温度、浓度条件下的反应速率。
式(4)中fC(C)表示浓度对反应速率的影响,通常可表示成幂函数形式或双曲线形式。对反应 (1)幂函数型的反应速率方程可写成:
(6)式中n1和n2分别为反应组分A和B的反应级数;n1+n2为反应的总级数,或简称反应级数。
双曲线型方程常用于气固相催化反应动力学的研究。例如反应A匑R是由组分A的分子吸附、表面反应和组分R的分子脱附等步骤组成,当表面反应为控制步骤时,其速率方程式可写作:
(7)式中pA和pR分别为组分A和R的分压;k为包括吸附平衡常数在内的速率常数;kA和kR分别为组分A和R的吸附平衡常数;K为化学平衡常数。
应用动力学 着重研究工业反应器操作范围内反应速率和反应条件之间的定量关系。为此,发展了一系列动力学实验研究方法。
工业反应过程的特点是在化学反应的同时伴随着各种传递过程(见反应器传递过程)。在应用动力学研究中,传递过程的影响难以完全排除;或为应用方便,而有意识地模拟工业反应过程的传递条件,于是将传递过程的影响归并到反应动力学中去,从而得到一定传递过程条件下的表观动力学规律。与此对应,排除传递过程影响而得的反映化学反应本身规律的反应动力学称本征动力学。
动力学模型 按化学反应的不同特点和不同的应用要求,常用的动力学模型有:
① 基元反应模型 根据对反应体系的了解,拟定若干个基元反应,以描述一个复杂反应(由若干个基元反应组成的反应)。按照拟定的机理写出反应速率方程,然后通过实验来检验拟定的动力学模型,估计模型参数。这样得到的动力学模型称为基元反应模型。合成氨的链反应机理动力学模型即为一例。
② 分子反应模型 根据有关反应系统的化学知识,假定若干分子反应,写出其化学计量方程式。所假设的反应必须足以反映反应系统的主要特征。然后按标准形式(幂函数型或双曲线型)写出每个反应的速率方程。再根据等温(或不等温)动力学实验的数据,估计模型参数。这种方法已被成功地用于某些比较复杂的反应过程,例如乙烷、丙烷等烃类裂解。
③ 经验模型 从实用角度出发,不涉及反应机理,以较简单的数学方程式对实验数据进行拟合,通常用幂函数式表示。
对于有成千上万种组分参加的复杂反应过程(如石油炼制中的催化裂化),建立描述每种组分在反应过程中的变化的分子反应模型是不可能的。近年来发展了集总动力学方法,将反应系统中的所有组分归并成数目有限的集总组分,然后建立集总组分的动力学模型。集总动力学模型已成功地用于催化裂化、催化重整、加氢裂化等石油炼制过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条