说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 移模速度
1)  speed of moving mold
移模速度
2)  Migration velocity model
偏移速度模型
1.
Building of 3D pre-stack depth migration velocity model under deep volcanic environment in northern Songliao Basin;
松辽盆地北部深层火山岩地质条件下三维叠前深度偏移速度模型建立
3)  migration velocity modeling
偏移速度建模
1.
Common focus point gather migration velocity modeling based on constraint parameter inversion;
基于约束参数反演的共聚焦点道集偏移速度建模方法
2.
According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimized three parameters in CRS gather.
本文推导了基于CRS叠加得出的优化三参数与偏移速度之间的解析关系 ,提出了在CRS道集通过优化三参数实现速度估计的CRS道集偏移速度建模方法 。
4)  Location-speed mode
位移-速度模型
5)  3-D migration velocity model
三维偏移速度模型
6)  slip velocity
滑移速度
1.
In the present paper, combination of pressure difference method with gas-liquid inter-phase slip velocity was proposed to measure the phase holdups in TPALRs.
将压差法与气?液相间滑移速度相结合,提出了利用压差法测量三相区局部相含率的新方法,将测得的局部固含率进行轴向平均并与由颗粒装填量计算所得的固含率进行比较,证明了此方法的可靠性。
2.
Distribution law of its inner Flow Field and separation characteristic of oil and water phases flow were obtained according to the analysis of distribution of oil phase volume concentration, distribution of oil phase slip velocity and separation efficiency under different flux.
数值模拟了油水分离用水力旋流器油水两相流,分析了水力旋流器内部油相体积浓度分布、油相滑移速度分布以及不同流量下的分离效率,得到了水力旋流器内部流场的分布规律和油水两相流的分离特性。
3.
Local slip velocity is an important factor in mass,momentum and heat transfer of riser reactors.
这种颗粒团尺寸的不均匀性导致了滑移速度沿径向也存在着梯度分布 。
补充资料:提高模腔加工速度

EDM工艺和技术的最新发展连同精度、自动化和微型模具制造技术的改进一道,可以给国内模具制造业带来意外的收获。


速度不是解决方案


增大驱动速度是提高EDM开模速度的一个办法,用这个办法可以减少非生产性提升动作的时间,但是增大速度只能局


限于小电极和很深的模腔。另外,如果超过一定的速度,电极的磨损是相当可观的,而且轴速太高将在机械系统造成极大的应力,使机床付出更高的代价,并缩短工作寿命。因此,如果认为普遍提高加工速度只能通过加快提升动作来实现,那是错误的。加快轴对机械加工只是一种辅助作用,从一个侧面改进脉冲发生器、过程控制器、间隙宽度调整和机械系统之间的复杂关系。开模EDM加工需要智能冲洗。


潜力在于冲洗


你可以把EDM加工过程想象成在经过放电加工的材料和被蚀除的材料之间的一定间隙达到平衡。一旦这种平衡不存在,你就会徒劳地冲洗加工区域(给加工过程带来时间损失和附加不稳定性),或者对无法充分地从这个间隙中排除出去的微粒进行若干次的“放电”。


在材料可以被抽离这个间隙之前,必须把它从工件上蚀除下来。那么如何才能达到较大的蚀除率呢?同一切优化问题一样,最大增益的潜力在于最小效率之处。一次放电在理论上的加工效率大约是25%。此外还有一些因素使这一效率进一步降低(例如过程控制问题、非理想的冲状况、间隙太小)。因此在实际上必须考虑到10%以下的效率。 


蚀除率和表面质量决定时间需要。


在EDM情况下,我们的目标一方面总是优化放电加工的蚀除性能,另一方面是达到工件的表面质量要求。工件经过加工以后往往显示一定的最终粗糙度和形位精度。另外还需要两个条件(1)工件表面的热影响区尽可能小;(2)电极磨损尽可能小。这些边际条件对加工时间和工件生产成本起决定性的作用。实际上是采用一系列的工艺参数,因为从粗加工到最后精加工,脉冲能量逐渐减小,直到获得必要的工艺结果。“慢工出细活”的道理再一次适用。


物理过程说明一个解决方案


趋于理想状态的途径意味着按箭头方向移动特征曲线,其用意是加快EDM速度而保持相同的间隙宽度、粗糙度和电极磨损。遗憾的是,到目前为止,如果增大EDM脉冲的放电能量,只会增大粗糙度和间隙宽度,所以在粗加工过程获得的速度增益又被较长时间的精加工抵消了。只要重新回到EDM基础理论——导致火花形成和金属蚀除的物理过程,就能发现一个通向解决方案的途径。


说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条