1) abnormal bainite
变态贝氏体
2) morphology of bainite
贝氏体形态
3) bainitic transformation
贝氏体转变
1.
It was found that an upper bainitic transformation,γ→α-Fe+γ′-Fe_4N,occurred preferentially at either the grain boundaries or the dislocation lines in the interior of austenite grains,producing a microstructure which,although morphologically looking markedly different,consisted of bainitic packets composed of parallel bainitic ferrite(α-Fe)laths withγ′-Fe_4N lath.
等温转变属于γ→α-Fe+γ′-Fe_4N上贝氏体转变,转变产物由α-Fe板条和γ′-Fe_4N板条交替排列而成的贝氏体板条团以及离散分布在贝氏体团块间的残余奥氏体(γr)小团块组成。
2.
The effect of deformation on bainitic transformation and the microstructure of a microalloyed clean steel and two commercial steels (STE355 and X60) has been studied.
讨论了变形对高洁净微合金钢贝氏体转变及转变组织的影响,并与两种工业钢STE355(8Y)、X60(6B)进行了比较,试验在720~1100℃进行。
3.
Two stages, meta bainitie and typical bainitie stage, can be observed in the process of bainitic transformation for steels containing alloying elements which can preclude the precipitate of carbides.
含有阻碍碳化物析出的合金元素的钢 ,贝氏体转变过程可以分为二个阶段 :准贝氏体阶段和典型贝氏体阶段 ,准贝氏体阶段组织为贝氏体铁素体和残余奥氏体 ,典型贝氏体阶段组织为贝氏体铁素体和碳化物。
4) bainite transformation
贝氏体相变
1.
Effect of deformation parameters on bainite transformation of Nb-microalloyed low carbon steel;
热变形参数对铌微合金钢贝氏体相变的影响
2.
Research on bainite transformation in GDL-1 steels with different rare earth content;
不同稀土含量的GDL-1钢中贝氏体相变研究
3.
This paper Overviewed recent research of bainite transformation.
本文综述了贝氏体相变的最新研究进展。
5) bainitic transformation
贝氏体相变
1.
Orientation Relationship of Bainitic Transformation in a Cu Zn Al Mn Alloy;
Cu-Zn-Al-Mn合金贝氏体相变的位向关系
2.
Point-of-views on mechanism of bainitic transformation given by different authors, displacists and diffusionists, on basis of morphology, kinetics or crystallography are critically reviewed.
钢、有色合金和一些陶瓷材料中都存在贝氏体相变。
3.
, segregate at grain boundaries or other defects, and even the carbide may precipitate, resulting in the increase of the driving force for nucleation, in turn, marked raise of the nucleation rate and acceleration of incubation for bainitic transformation.
外加应力使贝氏体相变形核率增大,等温孕育期缩短,即使所加应力远低于母相的屈服强度,由于钢中γ→α+γ的形核驱动力较大(约为kJ/mol数量级),贝氏体相变的膨胀应变能很小,过小的外加应力对形核率的影响甚微,考虑在外加应力的影响下,会使界面能量有所下降,也可能发生碳原子的再分布,偏聚在晶界或其它缺陷,甚至碳化物析出都会显著地增大形核率和缩短孕育期,有待进一步实验给予证明,无应力下,贝氏体相变动力学可以用Avrami的等温相变方程来表述;应力下则符合应力下铁素体及珠光体相变的动力学模型(经修改的Avrami方程),形变奥氏体促发贝氏体相变,但随后会发生奥氏体的力学稳定化,其机制可能和马氏体相变时的奥氏体力学稳定化不完全相同,仅形变形成的位错阻碍贝氏体以一定位向长大,使相变动力学迟缓,贝氏体相变时奥氏体力学稳定化的模型有待建立。
6) Bainite transformations
贝氏体变化
补充资料:奥氏体-贝氏体球铁
分子式:
CAS号:
性质:又叫奥-贝球铁。基体组织为奥氏体加贝氏体组织的球墨铸铁。这类球铁硅含量一般在1.4%~3.8%。含锰量小于0.5%,与普通球铁比较硅偏高、锰偏低。通过调节化学成分与热处理获得理想的奥-贝球铁的基体组织为针状贝氏体或无碳贝氏体一富碳奥氏体。这类球铁具有优良的综合机械性能、强度高、耐磨性好、韧性好、特别是有高的缺口韧性,可代替钢,用于制作重要受力结构件,如曲轴、齿轮、凸轮轴等。
CAS号:
性质:又叫奥-贝球铁。基体组织为奥氏体加贝氏体组织的球墨铸铁。这类球铁硅含量一般在1.4%~3.8%。含锰量小于0.5%,与普通球铁比较硅偏高、锰偏低。通过调节化学成分与热处理获得理想的奥-贝球铁的基体组织为针状贝氏体或无碳贝氏体一富碳奥氏体。这类球铁具有优良的综合机械性能、强度高、耐磨性好、韧性好、特别是有高的缺口韧性,可代替钢,用于制作重要受力结构件,如曲轴、齿轮、凸轮轴等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条