1) two-dimensional pure topographical model
二维纯地形异常
2) three-dimensinal pure topographical model
三维纯地形异常
5) pure anomaly
纯异常
1.
Indicate: potential and potential gradient parameters of first field can′t reflect the ore, but pure anomaly and apparent resistivity can well reflect.
以点源电流场中的体极化球体为例,通过理论计算总结出当充电点位于地面不同位置和地下不同深度时,不同参数的剖面和平面异常分布规律:一次场电位和电位梯度参数反映矿体能力很差,而纯异常和视电阻率参数反映能力较强;二次场的电位参数反映能力较差,而电位梯度和视极化率参数反映能力较强。
6) 3D geoelectric anomalous body
三维地电异常体
1.
On the basis of theory of electromagnetic field, setting up a geoelectric model, carry out mine 3D geoelectric anomalous body numerical simulation through the use of finite difference method.
依据电磁场理论,构建地电模型,利用有限差分对矿井三维地电异常体进行数值模拟,得到异常体在电阻率不同、至巷道距离不同、及测点不同情况下的层测深曲线,并对其分布规律进行分析研究。
补充资料:地形跟随和地形回避雷达
飞行器上探测地形变化和回避地物的雷达。它是自动地形跟随系统的组成部分。地形跟随雷达把探测到的飞行前方的起伏地形信息(距离、方位、高度)提供给自动飞行控制系统或驾驶员,以便操纵飞机与地面保持一定的垂直距离飞行。地形回避雷达不断探测出飞行前方高于规定高度的障碍物,驾驶员根据雷达的指示作横向的机动飞行。现代军用飞机为了低空安全飞行,机上只装地形跟随雷达就能满足要求,而地形回避雷达则是一种辅助手段。有的机载雷达兼有地形跟随和地形回避功能。
地形跟随和地形回避雷达的工作原理与普通的脉冲雷达(见脉冲多普勒雷达)大致相同,区别只是功能不同,组成有些差异。测量精度和分辨率比一般雷达高。这类雷达多采用单脉冲技术,有的采用脉冲多普勒体制或相控阵技术。用地形跟随雷达飞行时,天线波束以一定的俯角照射飞机前方的地面或在一定的俯角内扫描,随时将测出的距离与规定的参考距离作比较,产生一个要求的俯仰变化率信号。同时由无线电高度表测出飞机对地面的相对高度,并与规定的安全相对高度相比较,产生另一个要求的俯仰变化率信号。从这两个俯仰变化率中选取一个对飞行较安全的变化率,再与陀螺测定的飞机实际俯仰变化率作比较,其差值信号就是飞机爬高飞行或下降飞行的修正值 (图1)。
地形回避雷达比地形跟随雷达简单。驾驶员可以选择与飞机有一定高度间隔的安全飞行平面,雷达天线保持一固定的俯仰角,左右扫描,测出高于安全飞行平面地物的高度,驾驶员操纵飞机作横向机动,绕过地形障碍。雷达提供的地物回避指令信号也可输给自动驾驶仪,使飞机自动避开障碍物 (图2)。
为了确保低空飞行的安全,这两种雷达都备有自检报警系统并采用余度技术,一部雷达出现故障时,立即自动转换另一部接替。
地形跟随和地形回避雷达的工作原理与普通的脉冲雷达(见脉冲多普勒雷达)大致相同,区别只是功能不同,组成有些差异。测量精度和分辨率比一般雷达高。这类雷达多采用单脉冲技术,有的采用脉冲多普勒体制或相控阵技术。用地形跟随雷达飞行时,天线波束以一定的俯角照射飞机前方的地面或在一定的俯角内扫描,随时将测出的距离与规定的参考距离作比较,产生一个要求的俯仰变化率信号。同时由无线电高度表测出飞机对地面的相对高度,并与规定的安全相对高度相比较,产生另一个要求的俯仰变化率信号。从这两个俯仰变化率中选取一个对飞行较安全的变化率,再与陀螺测定的飞机实际俯仰变化率作比较,其差值信号就是飞机爬高飞行或下降飞行的修正值 (图1)。
地形回避雷达比地形跟随雷达简单。驾驶员可以选择与飞机有一定高度间隔的安全飞行平面,雷达天线保持一固定的俯仰角,左右扫描,测出高于安全飞行平面地物的高度,驾驶员操纵飞机作横向机动,绕过地形障碍。雷达提供的地物回避指令信号也可输给自动驾驶仪,使飞机自动避开障碍物 (图2)。
为了确保低空飞行的安全,这两种雷达都备有自检报警系统并采用余度技术,一部雷达出现故障时,立即自动转换另一部接替。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条