1) Molecular topologic properties
分子拓扑性质
2) differential topological characteristic
微分拓扑学性质
1.
Hence a conclusion is drawn that SSSR s complex differential topological characteristics are closely involved in some deep bifurcation of nonlinear dynamic systems.
该研究思路和研究方法,希望能对进一步探求真实电力系统小扰动稳定域的微分拓扑学性质起到一定的启示作用。
3) differential topological characteristics
微分拓扑性质
4) topological property
拓扑性质
1.
A topological property on the solution of a fuzzy relation equation;
关于模糊关系的解的拓扑性质(英文)
2.
A viability theorem for the partial differential inclusions is proved and a topological property of the viability solution set for the partial differential inclusions is given.
研究Hilbert空间中偏微分包含解轨道的生存问题,证明了具有右端不连项的非自治偏微分包含的生存定理,并研究了生存解集的拓扑性质。
3.
The author has introduced a new topological property which is between B-property and P-property, as well as between meso-compactness and countable meso-compactness, and it is named meso- B -property.
引入了一种介于B-性质与P-性质之间、介于中紧与可数中紧之间的拓扑性质──中B性质,并对这种性质作了系统的研究,分别讨论了它的等价条件、遗传性和映射保持性,还讨论了乘积空间的中-B性质,最后举例说明中B-性质严格介于B-性质与P-性质之间,严格介于中紧与可数中紧之间。
5) topological properties
拓扑性质
1.
The topological properties for translation, rotation and scale is invariant pattern recognition.
拓扑性质具有对图形的平移、伸缩、旋转的不变性。
2.
This paper analysizes the problems of the Front Generation Technique forFEM mesh generation, and studies the influence of the topological properties of plannardomains on the validity of FGT method.
分析了FrontGenerationTechnique(以下简称FGT)有限元网格生成方法[1]存在的问题,研究了平面区域的拓扑性质对此法网格生成有效性的影响,并提出加点法和区域分解法,进而对平面任意区域生成有限元网格的FGT法进行改进。
3.
On the base of Norman Levine s research on the topological properties of sinple extension, which some other topological properties of single extension are proposed and proved.
该文在 Norman Levine对单扩张保持的一些拓扑性质的研究的基础上 ,采用“平行命题”的思考方法 ,提出并证明了单扩张保持的其他若干拓扑性
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条