说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 疲劳机制
1)  Fatigue mechanism
疲劳机制
2)  thermal shock fatigue mechanism
热震疲劳机制
1.
The thermal shock fatigue mechanisms of the ceram were discussed.
研究了Al2O3-TiC复合陶瓷的热震疲劳机制和TiC的添加量对其热震疲劳抗力的影响。
3)  Institutional fatigue
制度疲劳
4)  fatigue mechanism
疲劳机理
1.
The “interface control” model of the fatigue mechanism has been suggested, through which the unique fatigue property and the extra phenomenon of reinforcing behavior of fatigue.
提出了“界面控制”疲劳机理分析模型 ,并用此模型合理解释了碳 /碳复合材料优异的抗疲劳性能以及异常的“疲劳强化”现象。
2.
The fatigue mechanism of SNC was studied and the effect factors on the fatigue properties were deeply discussed.
本文在前期研究工作的基础上,采用由超声喷丸纳米化技术处理的316L不锈钢试样,对纳米化前后的试样分别进行了表层显微组织、表层裂纹观察、疲劳试件纵剖面形貌分析、拉伸实验、疲劳试验、扫描电镜SEM观测、残余应力测定、ANSYS有限元模拟等,对表面纳米化疲劳机理进行了研究,并对疲劳性能的影响因素进行了较为细致分析研究,得出的结论如下:1、超声喷丸表面纳米化使组织形貌发生变化,表面晶粒细化。
5)  mechanical fatigue
机械疲劳
1.
A mong so many factors contributing to durability, mechanical fatigue is the primary factor.
在影响耐久性的诸多因素中,机械疲劳是首要因素。
2.
The key results are as follows: Frequency has no effect on fatigue crack growth and the main control mechanism is mechanical fatigue at 550℃; Frequency has no effect on fatigue crack growth and the main control mechani.
结果表明:在试验温度为550℃时,频率的改变对直接时效GH4169高温合金疲劳裂纹扩展性能基本没有影响,其裂纹扩展的控制机理是机械疲劳;在试验温度为650℃时,在0。
3.
In this paper,the experimental study and the analysis about the behavior of thermal mechanical fatigue (TMF) crack growth were conducted in Ni 3Al superalloy,with thermal cycle of 450℃ to 990℃.
本论文对 Ni3Al高温合金进行了 45 0℃~ 990℃热 /机械疲劳裂纹扩展行为的试验研究与宏微观分析。
6)  mechanism of fatigue
疲劳机理
补充资料:磁耦合机制和沙兹曼机制
      解释太阳系角动量特殊分布的两种理论。太阳质量占太阳系总质量的99.8%以上,但其角动量(动量矩)却只占太阳系总角动量的1%左右,而质量仅占0.2%的行星和卫星等天体,它们的角动量却占99%左右。太阳系角动量的这种特殊分布,是太阳系起源研究中的一个重要问题。1942年,阿尔文提出一种"磁耦合机制"。他认为,太阳通过它的磁场的作用,把角动量转移给周围的电离云,从而使由后者凝聚成的行星具有很大的角动量。他假定原始太阳有很强的偶极磁场,其磁力线延伸到电离云并随太阳转动。电离质点只能绕磁力线作螺旋运动,并且被磁力线带动着随太阳转动,因而从太阳获得角动量。太阳因把角动量转移给电离云,自转遂变慢了。
  
  1962年,沙兹曼提出另一种通过磁场作用转移角动量的机制,称为沙兹曼机制。他认为,太阳(恒星)演化早期经历一个金牛座T型变星的时期,由于内部对流很强和自转较快,出现局部强磁场和比现今太阳耀斑强得多的磁活动,大规模地抛出带电粒子。这些粒子也随太阳磁场一起转动,直到抵达科里奥利力开始超过磁张力的临界距离处,它们一直从太阳获得角动量。由于临界距离达到恒星距离的量级,虽然抛出的物质只占太阳质量的很小一部分,但足以有效地把太阳的角动量转移走。沙兹曼也用此机制解释晚于F5型的恒星比早型星自转慢的观测事实。晚于F5型的恒星,都有很厚的对流区和很强的磁活动,通过抛出带电粒子转移掉角动量,自转因而变慢。然而早于F5型的恒星,没有很厚的对流区,没有损失角动量,因而自转较快。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条