说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高速加载
1)  High speed load
高速加载
2)  high loading rate
高加载速率
1.
Effect of lower temperature and high loading rate on the fracture behaviors of weld metal was studied.
研究了结构钢焊缝金属在低温和高加载速率条件下的断裂韧度与断口形貌变化规律,讨论了沿晶脆性断裂的本质。
3)  accelerated loading
加速加载
1.
Finally,a full-scale accelerated loading test was carried out to analyze the rut prediction model and the ru.
采用Kenlayer程序计算各层表面的弯沉和应力,以及各层的永久变形参数,得到了不同荷载作用次数下的预测车辙,并利用足尺加速加载试验来分析该模型和车辙的形成规律。
4)  loading rate
加载速率
1.
Molecular-dynamics simulation of influence of loading rate and defects on crack growth;
加载速率和点缺陷对裂纹扩展影响的原子级模拟
2.
Effect of loading rate on fracture toughn ess of a ship-building steel;
加载速率对船用钢断裂韧性的影响
3.
Influence of loading rate on stress and strain distribution a notchs in front of in notched specimen;
加载速率对缺口前应力、应变分布的影响
5)  loading rates
加载速率
1.
Experimental analysis on mechanical effects of loading rates on limestone;
加载速率对石灰岩力学效应的试验研究
2.
Both stress-strain relation curve and rupture condition of the rubber were attained under different temperatures and different loading rates.
得到了不同温度和不同加载速率条件下材料的应力-应变关系曲线和材料的破坏条件,由此分析了高温和低温的温度变化条件及加载速率对材料力学性能的影响,得出天然橡胶材料在大变形条件下的温度和加载速率敏感特性。
3.
The compressive tests of 63 concrete specimens under four lateral stress levels and four loading rates were completed using the static-dynamic triaxial test system for concrete in Dalian University of Technology.
本文利用大连理工大学的大型混凝土静、动三轴试验系统,完成了4种侧应力等级和4个数量级加载速率的混凝土受压试验试件共63个。
6)  Loading velocity
加载速率
1.
Study on the best loading velocity in small punch test for P91 steel;
P91钢微型杯突试验法最佳加载速率的研究
2.
The linearity of the pressure-resistivity regressive curve was improved when loading velocity has been increased from 0.
主要讨论了不同轴向加载速率对复合体系电阻机械效应的影响。
补充资料:高速加工中的加减速控制
这是一篇高速加工数控系统开发方面的理论性较强的文章。众所周知,加减速控制是CNC系统中插补器的一项十分重要的控制功能,它对加工精度和系统性能都有着十分重要的影响。特别是在高速加工中,加减速就显得尤为重要。文中,作者在分别分析了数控系统中直线形、三角函数形、指数形、S形、直线加抛物线形加减速控制曲线的基础上,对这几种控制方法各自的优缺点及适用场合进行了比较,并着重讨论了S曲线加减速算法。


    加减速控制是数控系统插补器的重要组成部分,是数控系统开发的关键技术之一。数控加工的目标是实现高精度、高效率的加工,因此,一方面要求数控机床反应快,各坐标运动部件能在极短的时间内达到给定的速度,并能在高速运行中快速准确地停止在预定位置,缩短准备时间;另一方面要求加工过程运动平稳,冲击小。因此,如何保证在机床运动平稳的前提下,实现以过渡过程时间最短为目标的最优加减速控制规律,使机床具有满足高速加工要求的加减速特性,是研究中的一个关键问题。


一、加减速控制方式


    在CNC装置中,为了保证机床在起动或停止时不产生冲击、失步、超程或振荡,必须对进给电机的脉冲频率或电压进行加减速控制,即在机床加速起动时,保证加在伺服电机上的脉冲频率或电压逐渐增加,而当机床减速停止时,保证加在伺服电机上的脉冲频率或电压逐渐减小。根据加减速控制在控制系统中的位置,加减速有前加减速和后加减速之分。前加减速中加减速控制放在插补器的前面,后加减速中加减速控制放在插补器的后面,如图1所示。




图1 前加减速与后加减速


    前加减速的控制对象是指令进给速度V,它是在插补前计算出进给速度V′,然后根据进给速度进行插补,得到各坐标轴的进给量△X、△Y,最后转换为进给脉冲或电压驱动电机。这种方法能够得到准确地加工轮廓曲线,但需要预测减速点,运算量较大。后加减速的控制算法放在插补器之后,它的控制量是各运动轴的速度分量。它不需要预测减速点,而是在插补输出为零时开始减速,并通过一定的时间延迟逐渐靠近程序段的终点。这种方法的缺点是:由于它是对各运动轴分别进行控制,所以在加减速控制后,实际的各坐标轴的合成位t不准确,引起轮廓误差,并且当轮廓中存在急剧变化时,后加减速无法预见,从而会产生过冲。


说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条