1) fractional Gaussian noise
分数高斯噪声
1.
The fractional Gaussian noise (fGn) method is more effective than .
对生成的精细剖面图进行了对比,结果表明,分形随机建模能同时考虑地层参数分布的结构性和间歇性,而分数高斯噪声(fGn) 比分数布朗运动(fBm) 更适合描述沉积环境变化剧烈、随机干扰强的地层。
3) fractal gaussian noise
分形高斯噪声
1.
One is a fractal Gaussian noise (fGn) and the other is a multi-fractal wavelet model (MWM).
讨论了分形高斯噪声模型和多分形小波模型。
4) Gaussian noise
高斯噪声
1.
Method for filtering image contaminated with strong Gaussian noises;
一种强高斯噪声的图像滤波方法
2.
Removal of Gaussian noise from images based on an adaptive volterra filter
基于自适应Volterra的高斯噪声图像滤波算法
3.
Gaussian Noise Suppression based on the Module Filter of low SNR Image
低信噪比图像高斯噪声非线性模值滤波算法分析
5) Gauss noise
高斯噪声
1.
To remove mixed impulse noise and Gauss noise in digital images,a new mixed filter based on the adaptive median filter and fuzzy weighted mean filter is proposed.
为了去除图像中混入的脉冲噪声和高斯噪声,提出了一种基于自适应中值滤波和模糊加权均值滤波的混合滤波方法。
2.
The experiment indicated that gauss noise and spot noise may be removed effectively using the method,and the detail of image may be saved commendably,achieved with hardware expediently.
实验表明,该算法能有效滤除图像中的高斯噪声和斑点噪声,同时能很好地保持图像中的细节部分且比较容易用硬件实现。
3.
In this paper,we have proposed a higher order statistics based weighted image hybrid filter to denoise Gauss noise blurred images.
根据高斯噪声的特点,该文引入高阶统计量并结合空域滤波的模板法描述图像的纹理信息,提出了一种基于高阶统计量分析的图像混和加权滤波方法。
6) Gaussian noise
高斯噪声<声>
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条