1) decomposition blast
分解爆破
2) blow-up solution
爆破解
1.
The existence theorem of blow-up solutions,the upper bound of "blow-up time",and the upper estimate of "blow-up rate" are given under some suitable assumptions on g,f and initial data.
运用Hopf极值原理讨论了一类具Dirichlet边界条件的半线性抛物方程ut=(g(x)u)+f(x,u,q,t)(q=|u|2)的爆破问题,在对函数f,g和初值作适当的假设之下,给出了爆破解的存在性定理和“爆破时刻”的上界估计及“爆破率”的上估计。
2.
The blow-up solutions for a class of semilinear parabolic equations u\-t=Δu+f(u) with nonhomogeneous Neumann boundary conditions u/n=g(x,t) were studied.
运用辅助函数法和 Hopf极值原理讨论了一类具有非齐次 Neumann边界条件 u/ n=g(x,t)的半线性抛物方程 u,t=Δ u+f (u)的爆破解 ,在对函数 f ,g和初值作适当的假设之下 ,给出了爆破解的存在性定理和“爆破时刻”的上界估计及“爆破率”的上估计 。
3.
The blow-up rate of the blow-up solutions is estimated.
讨论了物性依赖于温度的非线性热传导方程ut=uαuxx1<α<32具非线性边界条件-ux(0,t)=up(0,t),u(l,t)=0的解的性态,并估计了爆破解的爆破速率。
3) explosive solutions
爆破解
1.
The existence of explosive solutions is obtained for a class of second order nonlinear ordinary differential equations.
得到了一类二阶非线性常微分方程爆破解的存在性。
2.
In this paper, the author discusses a class of general second order Nonlinear Ordinary Differential Equations about boundary value problems, then the necessary and sufficient condition of the existence of explosive solutions is obtained.
讨论了较广泛的一类二阶非线性常微分方程的边值问题,并得到了其存在爆破解的充要条件。
3.
The existence of explosive solutions is obtained for a class of quasilinear elliptic equations.
得到了一类拟线性椭圆型方程爆破解的存在性。
5) blowing-up lower solution
爆破下解
6) blow-up of solution
解的爆破
1.
The blow-up of solution of the Cauchy problem for a class of Bq-type equationutt-uxx-uxxtt-μuxxxx+uxxxxtt=f(u)xxis proved by use of so called "concavity" arguments.
利用凸性方法研究了Bq型方程utt-uxx-uxxtt-μuxxxx+uxxxxtt=f(u)xx的Cauchy问题解的爆破。
补充资料:500千克2式航空爆破弹
该弹由弹体、尾翼装置、传爆管、弹耳和炸药等组成。弹长1.5米,弹径450毫米,弹重473千克。弹身上有两个相距250毫米的弹耳,可悬挂在轰炸机和强击机下,在距地面600米以上高空进行投放。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条