1) concentrated alkaline solutions
浓碱溶液
1.
Cyclic Voltammetry have been used to investigate the electrochemical behaviour of copper in concentrated alkaline solutions.
采用循环伏安法研究了铜电极在浓碱溶液中的电化学行为。
2) hot concentrated caustic solution
热浓碱溶液
3) lye concentration
碱溶液浓度
1.
By measuring conductivity of lye in different temperature,gains and analyzes the curve of relationship between the conductivity of lye and its concentration,designs measuring and control system of lye concentration.
通过对设定范围内碱溶液在不同温度下的电导率的测量,得到了碱溶液传感器在不同浓度下电压输出和温度的关系曲线,主要分析了碱溶液的电导率与其浓度的关系,设计了碱溶液浓度测控系统,给出了系统接口的硬件电路和软件实现。
4) concentrated aqueous alkali
高浓度碱溶液
1.
The range of concentrated aqueous alkali above 200 g/L is one of single value.
利用电导法对高浓度碱溶液进行了浓度测量。
5) concentrated alkali solution
高浓碱性溶液
6) conductivity of lye
碱液浓度
1.
In order to slove the problem of temperature compensation in the detection of conductivity of lye solution density by electromagnic method,different density under different temperature conductivity data is measured through experimental technique.
探讨电磁法碱液浓度检测中的温度补偿问题。
补充资料:高分子浓溶液
高分子稀溶液和浓溶液的区别,可以从结构的观点来看,也可以从物理性质和实际应用来看。在稀溶液中每一个高分子线团在溶剂中成为孤立的个体,可以忽视线团与线团间的相互作用。它的物理性质主要反映孤立高分子链的结构。稀溶液除可用来测定分子量和分子的结构参数外,其他的实际应用很少。当溶液浓度逐渐增大时,溶液中两个线团开始接触而紧靠在一起,线团间的相互作用显得重要起来了。现有的实验事实说明由于高分子链段间和链段与溶剂分子间的相互作用,高分子-良溶剂溶液中高分子线团尺寸随溶液浓度的增大而缩小,溶液浓度更大时高分子线团将相互穿透,其堆砌密度随溶液浓度的增大而增大,最后达到非晶高聚物本体的结构形态,即相互穿透的无规线团(与 θ-溶剂中的线团尺寸相同)的密集堆砌(见高聚物非晶态结构)。也可以从溶液中高分子链段的一维空间密度分布(见图)来说明从稀溶液到浓溶液的转变。
在稀溶液中链段的空间密度分布, 当然是不连续的(相互孤立的线团),达到两个线团相互接触的浓度c*以上时,链段的空间密度分布将是连续的,但链段密度值到处有起伏。当浓度足够大,达到某一浓度c+以后,链段的空间密度分布的起伏愈来愈小,可以视为均一的,而链段密度值的增大将正比于浓度。所以从溶液结构和线团间的相互作用来看,可以把高分子溶液分为三个浓度区域:①稀溶液,孤立线团、线团间相互作用可以忽视;②亚浓溶液,高分子线团开始感觉到溶液中邻近线团的存在,即线团间的相互作用开始呈现其重要性,线团相互接触不过是更形象化的直观描述;③浓溶液,溶液中链段的空间密度分布趋于均一后的情况。但是这三个浓度区的分界浓度是不易明确地定义和测定的。一般说,高聚物-良溶剂体系稀溶液与亚浓溶液的分界浓度在10克/升以下,亚浓溶液与浓溶液的分界浓度约在0.2千克/升的量级。它随高聚物-溶剂体系和高聚物分子量而异。
高分子浓溶液有实际应用价值,例如高聚物溶液成膜、溶液纺丝、塑料增塑等。由此可见,高分子浓溶液结构是相互穿透的无规线团的密集堆砌,与非晶高聚物本体的结构相似,只是线团的堆砌密度比高聚物本体为小。因此,高分子浓溶液的物理-力学性质基本上与非晶高聚物本体相似,只是高分子链段更容易运动,并没有什么新特点。在制备高分子浓溶液时,由于体系的粘度大,松弛时间长,这种高聚物-溶剂二元体系很难达到热力学平衡态,往往制得的浓溶液是亚稳态。相同浓度的两个溶液由于制备方法或步骤不同,热历史和受力历史不同,体系的分散程度、结构形态都可能有一定程度的差异,因此在宏观的物理-力学性质上可以表现一定程度的差异,或由于历史效应,使浓溶液的研究变得很困难。
在稀溶液中链段的空间密度分布, 当然是不连续的(相互孤立的线团),达到两个线团相互接触的浓度c*以上时,链段的空间密度分布将是连续的,但链段密度值到处有起伏。当浓度足够大,达到某一浓度c+以后,链段的空间密度分布的起伏愈来愈小,可以视为均一的,而链段密度值的增大将正比于浓度。所以从溶液结构和线团间的相互作用来看,可以把高分子溶液分为三个浓度区域:①稀溶液,孤立线团、线团间相互作用可以忽视;②亚浓溶液,高分子线团开始感觉到溶液中邻近线团的存在,即线团间的相互作用开始呈现其重要性,线团相互接触不过是更形象化的直观描述;③浓溶液,溶液中链段的空间密度分布趋于均一后的情况。但是这三个浓度区的分界浓度是不易明确地定义和测定的。一般说,高聚物-良溶剂体系稀溶液与亚浓溶液的分界浓度在10克/升以下,亚浓溶液与浓溶液的分界浓度约在0.2千克/升的量级。它随高聚物-溶剂体系和高聚物分子量而异。
高分子浓溶液有实际应用价值,例如高聚物溶液成膜、溶液纺丝、塑料增塑等。由此可见,高分子浓溶液结构是相互穿透的无规线团的密集堆砌,与非晶高聚物本体的结构相似,只是线团的堆砌密度比高聚物本体为小。因此,高分子浓溶液的物理-力学性质基本上与非晶高聚物本体相似,只是高分子链段更容易运动,并没有什么新特点。在制备高分子浓溶液时,由于体系的粘度大,松弛时间长,这种高聚物-溶剂二元体系很难达到热力学平衡态,往往制得的浓溶液是亚稳态。相同浓度的两个溶液由于制备方法或步骤不同,热历史和受力历史不同,体系的分散程度、结构形态都可能有一定程度的差异,因此在宏观的物理-力学性质上可以表现一定程度的差异,或由于历史效应,使浓溶液的研究变得很困难。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条