1) energy compensation
能量补偿
1.
A review of research on mechanism of seismic attenuation and energy compensation;
地震波衰减机理及能量补偿研究综述
2.
A method to measure the dosage rate by energy compensation to the detectors is mentioned.
提出了对探测器进行能量补偿测量剂量率的方法。
3.
The concept of energy control is presented and energy compensation control is applied to swing up the rotary inverted pendulum.
针对倒立摆的起摆控制,建立了环形单级倒立摆基于拉格朗日方程的运动方程,在此基础上提出了能量控制的概念,并将能量补偿控制应用在环形单级倒立摆系统上。
2) energy compensator
能量补偿器
3) Energy compensation method
能量补偿法
4) Energy Sediment
能量补偿层
1.
By using Monte-Carlo method, this paper computes GM Tube s Energy Sediment in the space of y-radiation, and discusses the effect of different energy compensated layer on GM Tube s energy sediment.
本文利用MC(Monte-Carlo)方法,模拟计算了γ辐射场中GM计数管内的能量沉积值,并初步探讨了能量补偿层对GM计数管能量沉积的影响。
5) energy self-compensation
能量自补偿
1.
The process of SCWO was modeled through the Aspen Plus process simulator and SCWO energy self-compensation process was realized by closed Brayton cycle(CBC).
通过应用Aspen P lus模拟软件建立模型对SCWO过程进行模拟,采用布雷顿封闭循环(CBC)系统来实现SCWO的能量自补偿过程。
6) energy compensating device
能量补偿装置
1.
Design of parameters of energy compensating device on subsurface pump;
抽油泵能量补偿装置的参数设计及其他
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条