说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 金属无模爆炸加工
1)  metal mould-less explosive working
金属无模爆炸加工
2)  explosive metal
爆炸金属
3)  explosive working
爆炸加工
4)  electric exploding
金属电爆炸
1.
A new method to measure the electrical conductivity of metals in electric exploding;
一种测量金属电爆炸过程中电导率的新方法
5)  explosion workshop
爆炸加工洞
6)  Exploded metal clad plates
爆炸金属复合板
补充资料:爆炸加工
      以炸药(或火药和可燃气体)为能源把金属毛坯加工成型或焊接在一起的加工工艺。爆炸加工过程是炸药化学能转化为机械能的过程。 常用的炸药为TNT、硝铵炸药、导爆索和塑料(或橡胶)炸药等。由于炸药爆炸是快速过程,所以与常规加工方法(例如液压、冲压)相比,爆炸加工具有压力大、变形速度大、加工时间短,因而功率亦大等特点,所以是一种高能率加工方法。例如,把直径一米的毛坯加工成为封头,用水压机生产时,作用于毛坯的平均压力为几十个大气压 (1大气压=101325帕),成型时间为十几秒;而在爆炸成型时,作用于毛坯的平均压力为几千个大气压,成型时间约为 1/100秒。由于毛坯成型所需能量在两种情形下基本相等,所以爆炸成型的平均有效功率就比常规方法大103倍。 
  
  爆炸加工应用范围较广,主要有爆炸成型、爆炸焊接、爆炸硬化、高速模锻等几个方面。
  
  爆炸成型  钣金零件的拉深、 胀形、 卷边、翻口、冲孔、压梗、弯曲和校形等,都可用爆炸成型来完成。这是爆炸加工应用最成熟的一个方面。图1为几种爆炸成型装置的示意图,分别表示用爆炸成型方法制造拉深件(如封头)、胀形件(如喷气发动机的喷管)和平板件(如波纹板)。
  
  炸药一般放置水中,不和毛坯直接接触。爆炸压力通过水传递。有时为了防止毛坯起皱,也用砂作传压介质以增加毛坯表面的摩擦阻力。一般不用空气作传压介质,因它的传压能力太小。在有模爆炸成型时,由于毛坯变形速度较快,通常应将模腔内空气抽空,否则空气受压缩产生的高压会使零件破坏。如果模具设计合理,工艺参数(包括药形、药量、药位、水深、压边力等)选择恰当,只要引爆炸药,就能在瞬间(1米封头约需1毫秒)形成一个与模壁贴合良好的零件。
  
  爆炸成型原理  以圆板自由拉深加工工艺为例。圆板中心点位移与时间关系的试验结果如图2所示。从图中可以看出,爆炸成型时间很短,有两次加速过程,这就是爆炸成型中所谓"二次加载"的典型现象。机理如下:炸药起爆后,激波在水中传播,达到板壳内壁时发生反射。板壳在激波作用下迅速变形,向外运动,这是第一次加载。反射波最初表现出刚性反射的压缩性质,而后表现为稀疏性质。同时入射波又剧烈地衰减,因此,在板壳附近水中某处开始呈现拉伸状态。水不能承受拉力,因而产生空泡,阻止压力的下降,这称为空化现象。此后,空化区不断在水中扩张,因空化而被拉断的水利用已获得的动能向外作等速运动,赶上前方由于受变形阻力影响而减速的板壳,并不断给板壳补充动量使其继续运动。在某一时刻,空化区终止发展。与此同时,空化区内侧的水体在高压的爆炸气体推动下向外加速膨胀,追上一部分正在运动的空化水。最后在某时刻,内外两个速度不同的大水体进行碰撞,外水体和板壳的速度突然增加,这就是第二次加载。从此以后,板壳在变形阻力作用下,逐渐减速直至完成变形。就整个变形过程而言,碰撞后的变形量和变形时间都大于碰撞前。
  
  爆炸成型模型律  爆炸成型的工艺参数常常用模型试验的方法确定。理论和实验都表明爆炸成型满足几何相似律。只要在模型和原型中采用品种相同的炸药、传压介质和几何形状相似的板料,板料在爆炸以后的形状也相似。成型量y同毛料的特征长度L、特征厚度 δ和炸药量Q之间存在确定的函数关系:
  
  
  
  
  。薄壁零件的成型满足更为简单的能量相似律:
  
  
  
  
  。模型试验必须遵守上述几何相似律或能量相似律。
  
  爆炸成型的光洁度、精度和模具  在爆炸成型时,零件以很高的速度贴模,零件与模具之间产生较大的碰撞压力。因此,只要模具内表面光洁度高,零件贴模面光洁度也就较高。同时,大的碰撞力使模具内表面产生大的弹性变形,毛坯经碰撞和辗压后展开面积有所增加,这样减少了回弹,增大了精度。爆炸成型贴模是一个多次撞击的过程,计算模具强度时,一般取动载系数为3。大型零件的成型模具可采用分块惯性模。
  
  爆炸焊接  又称爆炸复合,是利用炸药的压力使两块金属间形成牢固的结合面的加工工艺。通常用于在碳素钢表面焊覆一层贵重金属(如不锈钢、钛、锆、铜或它们的合金),因而这种工艺可以节约贵重金属。常规工艺很难把两种熔点相差悬殊、热膨胀性能或硬度相差很大的金属焊接在一起,而用爆炸焊接方法却能得到质量较好的产品。
  
  爆炸焊接是一种高速碰撞现象。通常将炸药直接敷在复板金属表面。为了避免在金属表面出现伤痕或细裂纹,一般在炸药和金属间放置软橡皮或硬纸板作缓冲层(图3a、3b)。现用板材焊接来说明爆炸焊接的物理过程。炸药引爆以后,复板以每秒几百米的速度撞击基板,碰撞界面附近材料的压力剧增至约十万个大气压。部分材料在高压作用下形成射流(见彩图)。射流喷走,金属露出洁净并带有活性的新鲜表面。在高压作用下形成两种金属的冶金粘接,界面通常呈波纹状(图4)。大量试验表明两板之间出现射流是保证焊接成功的必要条件。在选择炸药品种、药量、基板与复板间隙、初始基板与复板夹角等参量时,必须考虑这一要求。带有小波幅波状界面的焊接件,往往具有高的焊接强度。对波纹形成的机理,尚未形成较成熟的理论,多数人认为形成波纹是一种界面运动失稳的表现。它是由复板和基板的界面速度存在间断引起的。还有些人从金相中看到粘接面附近有涡街,认为是材料绕过碰撞点以后产生的卡门涡街。
  
  
  爆炸硬化  有些金属(例如高锰钢)在炸药爆炸的高压作用下,能够显著提高表层的硬度,从而增加金属部件的使用寿命。这种方法已经成功地应用于加工铁路辙叉、推土机、拖拉机和坦克履带以及铲斗的刃口等产品。爆炸硬化的方法是把一层高爆速炸药放在金属需要硬?牟课簧辖斜āA?2~3次后,可获得较理想的结果。
  
  高速模锻  应用火炮的原理,用火药或高压空气发射锻锤锻造金属,锤速大于一般落锤,可以达到每秒几十米到一、二百米。高速模锻具有动量大、设备简单等优点。
  
  爆炸加工工艺还包括爆炸切割、爆炸压实粉末、爆炸合成金刚石等。
  
  

参考书目
   郑哲敏、杨振声等编著:《爆炸加工》,国防工业出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条