说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 质数
1)  prime number
质数
1.
The paper introduces a rapid calculation for gear change using ordinary function calculation in hobbing cylindrical straight gears with a teeth number greater or twice than a prime number over 100.
介绍了一种用普通函数计算器快速计算滚切齿数大于 1 0 0的质数及其整数倍的直齿圆柱齿轮的挂轮。
2.
It is very difficult to discrimnate a natural number to be a prime number by J Wilson s theorem This paper presents another method for discriminating prime number.
用威尔逊(JWilson)定理来判别自然数n是质数非常困难的给出了质数的另一种判别方法,对质数的判别简便易行
3.
In this paper a criteria of prime number is given:The natural number p is aprime number if p can t be represented as sum of four natural numbers sothat the product of every two numbers is equal to the product of the othertow nrmber
本文给出关于质数一个判定准则:数P为质数,当且仅当P不能表示为四个自然数之和,使其中的两数之积等于其余两数之积。
2)  prime [英][praɪm]  [美][praɪm]
质数
1.
This paper introduces the new method of solving the distributing change gear when the hobbing gear numbers of the prime cylinder spur gear are more than one hundred, which is processed with BASIC language.
本文提出了滚切齿数大于100的质数圆柱直齿轮时,分齿挂轮求解的新方法——用BASIC程序处理。
3)  Comprehensive index embodied quality
质量质数
4)  prime number array
质数数列
1.
This article makes a wide and common conclusion by studying the divisibility of the prime number,the judgement of the prime number,continual prime number and the prime number array,which brings convenience to further study on the judgement of it and the search of its concerned characters.
质数是整数中一类比较特殊的数,对于质数的某些特殊性质的研究具有广泛的意义,本文通过对质数的整除性、质数的判断、连续质数质数数列特点的探讨,从而总结出了一般广泛的结论,为我们判断质数以及寻找它的相关性质带来方便。
5)  prime number
素数;质数
6)  prime algebraic integral number
质代数整数
1.
if m≡1 (mod4), shown properties of Garssin integraldomain R(m~(1/2)) = Z[ω] Structure of quotient rings and critical condition of prime algebraic integral number.
当m≡1(mod4)时,证明了高斯整环R(m~(1/2))=Z[ω]的一些性质:R(m~(1/2))的商环的结构和R(m~(1/2))中质代数整数的判别条件。
补充资料:质数
又称“素数”。在大于1的自然数中,除了1及其本身以外不再含有别的因数的数。如2,[kg*4]3,[kg*4]5,[kg*4]7,11,…。早已证明质数有无穷多个,但一直没找到表达它的通项公式。到1983年为止,已发现的最大质数为mp=2p-1,其中p=86243。大于1的自然数,至少有一个因数是质数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条