说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 空间群修正
1)  space-group corrections
空间群修正
2)  Modified spatial smoothing method (MSSM)
修正空间平滑法
3)  Real-space renormalization-group
实空间重正化群
4)  correction population
修正种群
5)  modified group ring
修正群环
6)  revised subspace variational principle
修正子空间变分原理
1.
To remove this singularity, a revised subspace variational principle is proposed.
首先简化子空间变分原理的数学结构,据此表明子空间变分原理存在一定的奇异性,并提出消除奇异性的修正子空间变分原理。
补充资料:代数群的齐性空间


代数群的齐性空间
omogeneous space of an algebrak group

代数群的齐性空间【俪1瑰~.粤.沈ofan城罗加止gn卜即妇乳,.叩叭.此。POeTPa.eT即a月代6Pa.,伙K浦rpynuH」 一个代数簇(a】罗b口元论优妙)M连同一个代数群(a」罗b份icgro叩)G在其上正则传递的作用.如果x‘M,则迷向群(切tropy脚叩)Gx在G中是闭的.反之,如果H是代数群G的一个闭子群,那么左陪集的集合G/H具有一个代数簇结构,使其成为代数群G的一个齐性空间,此处自然映射形G~G/H是正则的,可分的并且具有以下的泛性质:对于任意在陪集上取常值的态射价:G一x来说,存在一个态射沙:GZH~X使得沙二=伞.如果M是代数群G的任意一个齐性空间而H二认,对某个x〔M,则自然一一映射功:G/H~M是正则的,并且当基域K的特征为零时,价是双正则的(见【11,【31). 假设在某个子域kCK上,连通群G,齐性空间M以及G在M上的作用均已被定义,那么k有理点的群G(k)将M(k)变到自身内且对于任意x任M(k)来说,G(k天=认(k).如果k是有限域,则M(k)尹必,再者,如果迷向群认是连通的,则G(k)在M(k)上传递地作用.在一般情形,对M中k有理点的研究归结到G公免上同调(G司幻她coho伽】ogy)理论中的问题(见【2]). 一个代数群G的齐性空间总是一个光滑的拟射影簇(见[51).如果G是一个仿射代数群,则簇G/H是射影簇,当且仅当H是G中一个抛物子群(paJ甩bolicsubgro叩)(见【3]).如果G是可约化的,则G/H是仿射簇,当且仅当子群H是可约化的(参见松岛判别法(Matsushilna criterion)).关于特征为O的代数闭域上一个线性代数群G的闭子群H使得G/H是拟仿射的描述是已知的(见【4],[6]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条