1) coupling condition
耦合条件
1.
The choice of optimum charge and coupling condition in high-resolution seismic exploration.;
高分辨率地震勘探中最佳药量及耦合条件的选取
2.
The problem is solved by coupling conditions on the water-shell interface.
对弹性杆与水下壳体接触冲击问题进行了研究,用有限元法模拟壳体,边界无法模拟无限域流体,通过温面上的耦合条件进行联立求解,文中给出了典型算例,并进行了有关讨论。
2) coupled boundary condition
耦合边界条件
1.
A coupled boundary condition.
利用Navier-Stokes(N-S)方程与Oseen方程的耦合,设计出了原始变量下稳态不可压N-S方程在出流边界上的一个耦合边界条件。
2.
To deal with self-adjoint Sturm-Liouville problems with coupled boundary conditions.
讨论了带有耦合边界条件的自伴Sturm-Liouville问题。
3.
Based on the relations about left-definite problems and right-definite problems,and the method of the eigenvalue curve,some conclusions of left-definite coupled boundary condition are obtained.
利用左定问题与右定问题的关系以及特征曲线的方法,给出了Sturm-Liouville问题耦合边界条件下若干左定边界条件的判定。
3) coupled boundary conditions
耦合边界条件
1.
For a Sturm-Liouville equation with positive leading coefficient function,using some limits on the space of self-adjoint boundary conditions,analytic loop of space of self-adjoint boundary conditions and monotonicity of continuous eigenvalue branch,we give a new proof of the eigenvalue inequalities for coupled boundary conditions and those for separated boundary conditions established.
对于首项系数函数为正的Sturm-Liouville方程,利用自伴边界条件空间中一些边界条件的极限、自伴边界条件空间中的解析圈及连续特征值分支单调性的性质,给出耦合边界条件与分离边界条件下特征值间不等式的另一种证法。
4) conditional decoupling
条件解耦
1.
When the redundant DOFs were taken as constant outputs,conditional decoupling concept can be used for the investigation of decoupling characteristics among the residual output variables.
引入条件解耦用于描述冗余自由度为固定输出时,其他各变量间的解耦特性。
5) separated and coupled boundary condition
分离与耦合边界条件
补充资料:jj 耦合
由给定电子组态确定多个价电子原子的能量状态的一种近似方法。它适用于原子中各价电子间的静电斥力势能之和远小于各价电子的自旋轨道磁相互作用能之和的情况,单个电子的轨道角动量pli将和其自旋角动量psi耦合成该电子的总角动量pji,,ji是第i个价电子的总角动量量子数,媡=h/2π,h是普朗克常数。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条