|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) nano-scale fiber
纳米级纤维
1.
Configuration of electrospun polycaprolactam nano-scale fibers;
静电纺锦纶6纳米级纤维的形态结构
2) nanometer stage material
纳米级纤维材料
3) nanofibers
纳米纤维
1.
Morphology and structure of SnO_2 nanofibers prepared by thermal explosive deforming synthesis method;
热爆形变合成SnO_2纳米纤维的形貌与结构
2.
Effect of LiCl on the structure of electrospun polyacrylonitrile nanofibers;
氯化锂对静电纺聚丙烯腈纳米纤维结构的影响
3.
Zn~(2+) doped TiO_2 nanofibers prepared by electrospinning technology;
基于静电纺丝技术制备Zn~(2+)掺杂TiO_2纳米纤维
4) Nano-fibers
纳米纤维
1.
Dispersion of Natural Brucite Nano-fibers;
天然水镁石纳米纤维的分散
2.
A new method of producing SnO2 nano - fibers was reported, which was named the thermal explosive deforming synthesis (TEDS), SnO2 nano-fibers produced by TEDS were analyzed by XRD, SEM and TEM.
综述了金属纳米纤维、半导体纳米纤维、陶瓷纳米纤维的研究进展,报道了一种制备SnO2纳米纤维的新方法-- 热爆形变合成法,采用该方法制备出了SnO2纳米纤维,经XRD、SEM和TEM分析表明,SnO2纤维的直径约20-100 nm, 其X-射线衍射谱与标准的SnO2衍射谱完全一致。
3.
Recent advances in research on technique of preparing nano-SnO_2 were summarized in terms of nano-particles,nano-film and nano-fibers.
从纳米微粒、纳米薄膜、纳米纤维的角度综述了SnO2纳米材料制备技术的研究进展,报道了一种制备纳米纤维的新方法———热爆合成法,讨论了用该方法制备纳米纤维的基本条件,并对用该方法制备出的SnO2纳米纤维进行了SEM和XRD分析。
5) Nanofibres
纳米纤维
1.
Fabrication of Y_2O_3 Nanofibres by Electrospining;
静电纺丝技术制备Y_2O_3纳米纤维
2.
Multi-fractal spectra of TEM images of MoO_3 nanofibres;
MoO_3纳米纤维TEM图像的多重分形谱
3.
PVP hollow nanofibres have been successfully prepared by electrospinning technique by using polyvinyl pyrroli-done(PVP),absolute ethanol and pure edible sesame oil as starting materials.
采用静电纺丝技术,以聚乙烯吡咯烷酮(PVP)、无水乙醇和纯芝麻油为原料,成功地制备出了PVP空心纳米纤维。
6) nano-fiber
纳米纤维
1.
Study on the Morphology Structure of Regenerated Silk Fibroin Nano-fiber by Static Spinning;
静电纺再生丝素纳米纤维形态结构的研究
2.
The study on the preparation of brucite nano-fiber and its nanocomposites;
水镁石纳米纤维制备及其纳米复合材料研究
3.
Study on electroless copper plating of PA6 nano-fiber;
PA6纳米纤维化学镀铜的研究
补充资料:看纺织印染中应用纳米材料和纳米技术
纺织印染中应用纳米材料和纳米技术时,除了要解决纳米材料的制备技术之外,重要的是要解决好纳米材料的应用技术,其中关键问题是使纳米粒子和纺织印染材料的基本成分(即聚合物材料)之间处于适当的结合状态。印染中,纳米粒子在聚合物基体中的分散和纳米粒子在聚合物表面的结合是主要的应用技术问题。 制备聚合物/无机纳米复合材料的直接分散法,适用于各种形态的纳米粒子。印染中纳米粒子的使用一般采用直接分散法。但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚,利用常规的共混方法不能消除无机纳米粒子与聚合物基体之间的高界面能差。因此,要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过必要的化学预分散和物理机械分散打开纳米粒子团聚体,将其均匀分散到聚合物基体材料中并与基体材料有良好的亲和性。直接分散法可通过以下途径完成分散和复合过程: 高分子溶液(或乳液)共混:首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。有人将环氧树脂溶于丙酮后加入经偶联剂处理过的纳米TiO2,搅拌均匀,再加入 40wt%的聚酰胺后固化制得了环氧树脂/TiO2纳米复合材料。还有人将纳米SiO2粒子用硅烷偶联剂处理后,改性不饱和聚酯。 熔融共混:将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机械上熔融共混。如将PMMA和纳米SiO2粒子熔融共混后,双螺杆造粒制得纳米复合材料。又如利用偶联剂超声作用下处理纳米载银无机抗菌剂粒子,分散制得PP/抗菌剂、PET/抗菌剂、PA/抗菌剂等复合树脂,然后经熔融纺丝工艺加工成抗菌纤维。研究表明,将经过表面处理的纳米抗菌剂粒子通过双螺杆挤出机熔融混炼,在聚合物中可以达到纳米尺度分散,获得了具有良好综合性能的纳米抗菌纤维,对大肠杆菌、金黄色葡萄球菌的抗菌率达到95%以上(美国AATCC-100标准)。 机械共混:将偶联剂稀释后与碳纳米管混合,再与超高分子量聚乙烯(UHMWPE)混合放入三头研磨机中研磨两小时以上。将研磨混合物放入模具,热压,制得功能型纳米复合材料。 聚合法:利用纳米SiO2粒子填充(Poly(HEMA))制备了纳米复合材料。纳米SiO2粒子首先被羟乙基甲基丙烯酸(HEMA)功能化,然后与HEMA单体在悬浮体系中聚合。还有利用SiO2胶体表面带酸性,加入碱性单体4-乙烯基吡咯进行自由基聚合制得包覆型纳米复合材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|