1) phonon radiative transfer
声子辐射传热
1.
The equation of phonon radiative transfer (EPRT) is deduced based on the Boltzmann transport equation (BTE).
用Boltzmann传输方程建立灰介电薄膜声子辐射传热方程,提出灰体介电薄膜的当量导热系数的概念,指出Fourier定律只适用于声学极厚区域,给出了用Fourier定律进行热流密度计算的误差。
2) radiative heat transfer
辐射传热
1.
A hybrid method for analyzing radiative heat transfer;
一种辐射传热混合模拟方法
2.
To accurately describe the fuel combustion and radiative heat transfer processes in furnaces is very crucial in comprehensive numerical simulation of ethylene pyrolyzer.
在乙烯裂解炉综合模拟研究中,准确地描述炉膛内燃料燃烧和辐射传热过程极其重要。
3.
thermal cracking reactions in tubular reactors,and the fuel combustion,flue gas flow and radiative heat transfer in furnaces.
以流体力学的基本微分方程为基础,考虑了流体的湍流流动,结合王宗祥等建立的轻烃裂解制乙烯动力学模型、扩散火焰燃烧模型和离散坐标辐射传热模型,建立了乙烯裂解炉内传递及反应过程的综合数学模型。
3) radiation heat transfer
辐射传热
1.
Single zonal method for diesel in-cylinder radiation heat transfer;
段法模型在柴油机缸内辐射传热的应用
2.
The traditional method of zero dimension model of radiation heat transfer in ethylene cracking furnace is not applicable large scale cracking heater.
应用概率统计理论尤其是用蒙特卡罗法对裂解炉管外辐射传热过程温度分布多维模型的开发研究 ,将计算结果应用到新建或扩建大型裂解炉的设计、采购、建设总承包项目和PMC工程项目管理中 ,可以提高裂解技术水平、降低投资费用并延长裂解炉运行周期。
3.
The paper introduced radiation heat transfer speciality of radiant porous body,and analyzed radiation angle coefficient of radiant porous body with square aperture by using numerical differentiation.
介绍了辐射多孔体的辐射传热特性 ,采用微分法对方形孔道辐射多孔体的辐射角系数进行了数值分
4) heat transfer by radiation
辐射传热
1.
On the basis of the fundamental principle of heat transfer by radiation,a kind of control differential equation describing heat transfer by radiation is given.
从辐射传输最基本的原理出发,给出了描述辐射传热的一个控制微分方程,该方程克服了目前用来求解辐射传热所用方法的一些缺陷,后映了辐射传热空间全方位性的特点。
5) radiant heat transfer
辐射传热
1.
The important significance of industrial furnace using infrared radiant material was analyzed through radiant heat transfer enhanced in industrial furnace with high temperature.
从高温工业炉强化炉内辐射传热过程的角度出发,分析了工业炉应用红外辐射材料的重要意义。
2.
A new dimensionality reduction method for calculating the radiant heat transfer with two dimensional characteristics was introduced in this paper.
针对具有二维特征的辐射传热问题 ,介绍了一种降维方法。
3.
Using Monte-Carlo method to calculate the radiant heat transfer in the hearth of cylindrical furnace,the comparative calculation including gas temperature distribution of the hearth and calorific intensity of furnace tube was done,taking gas absorption coefficient as constant and as function of flue gas.
对炉膛内的辐射传热用蒙特卡罗方法进行模拟计算,对吸收系数为常数及吸收系数随温度、浓度变化情况下的炉膛烟气温度分布与炉管热强度分布进行对比。
6) thermal radiation noise
热辐射噪声
补充资料:辐射传热
依靠电磁波辐射实现热冷物体间热量传递的过程,是一种非接触式传热,在真空中也能进行。物体发出的电磁波,理论上是在整个波谱范围内分布,但在工业上所遇到的温度范围内,有实际意义的是波长位于0.38~1000μm之间的热辐射,而且大部分位于红外线(又称热射线)区段中0.76~20μm的范围内。所谓红外线加热,就是利用这一区段的热辐射。研究热辐射规律,对于炉内传热的合理设计十分重要,对于高温炉操作工的劳动保护也有积极意义。当某系统需要保温时,即使此系统的温度不高,辐射传热的影响也不能忽视。如保温瓶胆镀银,就是为了减少由辐射传热造成的热损失。
热辐射的基本概念 任何物体在发出辐射能的同时,也不断吸收周围物体发来的辐射能。一物体辐射出的能量与吸收的能量之差,就是它传递出去的净能量。物体的辐射能力(即单位时间内单位表面向外辐射的能量),随温度的升高增加很快。一般说来,当一物体受到其他物体投来的辐射(能量为Q)时,其中被吸收转为热能的部分为QA,被反射的部分为QR,透过物体的部分为QD,显然这些部分与总能量之间有下式所示的关系:
QA+QR+QD=Q如果把A=QA/Q称为吸收率,R=QR/Q称为反射率,D=QD/Q称为穿透率,则有:
A+R+D=1若物体的A=1,R=D=0,即到达该物体表面的热辐射的能量完全被吸收,此物体称为绝对黑体,简称黑体。若R=1,A=D=0,即到达该物体表面的热辐射的能量全部被反射;当这种反射是规则的,此物体称为镜体;如果是乱反射,则称为绝对白体。若D=1,A=R=0,即到达物体表面的热辐射的能量全部透过物体,此物体称为透热体。实际上没有绝对黑体和绝对白体,仅有些物体接近绝对黑体或绝对白体。例如:没有光泽的黑漆表面接近于黑体,其吸收率为0.97~0.98;磨光的铜表面接近于白体,其反射率可达0.97。影响固体表面的吸收和反射性质的,主要是表面状况和颜色,表面状况的影响往往比颜色更大。固体和液体一般是不透热的。热辐射的能量穿过固体或液体的表面后只经过很短的距离(一般小于1mm,穿过金属表面后只经过1μm),就被完全吸收。气体对热辐射能几乎没有反射能力,在一般温度下的单原子和对称双原子气体(如 Ar、He、H2、N2、O2等),可视为透热体,多原子气体(如CO2、H2O、SO2、NH3、CH4等)在特定波长范围内具有相当大的吸收能力。
辐射能力和吸收能力 理论研究证明,黑体的辐射能力E0为:
E0=σ0T4此式称为斯忒藩-波耳兹曼定律。式中T为绝对温度;σ0为黑体的辐射常数(或称斯忒藩-波耳兹曼常数),其值为5.669×10-8W/(m2·K4)。为应用方便,此式可改写为:
式中C0为黑体的辐射系数,其值为5.669W/(m2·K4)。此式表明,温度对热辐射的影响极大。低温时热辐射常可忽略(如普通换热器中);高温时(如炉膛内),则成为传热的主要方式。
实际物体的辐射能的波长分布规律,随物体和温度而异。设实际物体辐射任一波λ的辐射能力为Eλ,在同温度下的黑体辐射相同波长的能力为E0λ;若Eλ/E0λ=常数,即物体的辐射能力与波长无关,则这种物体称为灰体。大多数工程材料在热辐射波长范围内接近于灰体。灰体的辐射能力E可表示为:
式中C(0)为灰体的辐射系数,其数值与物体的表面状况及温度有关。
物体的辐射能力与同一温度下黑体的辐射能力之比ε,等于各自的辐射系数之比,即ε=E/E0=C/C0。ε称为黑度,它代表物体的相对辐射能力。G.R.基尔霍夫发现,任何物体的辐射能力与吸收率A的比值都相同,且恒等于同温度下绝对黑体的辐射能力,即:
此式称为基尔霍夫定律。它表明物体的吸收率与黑度在数值上相等,即物体的辐射能力越大,吸收能力也越大。
两固体间的辐射传热 两物体间辐射传热的速率Q12可表示为:
式中T1、T2分别为两物体的表面温度;F1为一物体的表面面积;φ12为以F1为基准的角系数,代表一物体辐射出去的能量投射到表面F2的分率,它取决于两物体的形状、大小和相对位置;C12为总辐射系数,其值与两物体的黑度、大小、形状和相对位置有关。可以证明
φ12F1=φ21F2式中F2为物体2的表面面积;φ21为以F2为基准的角系数,代表物体2辐射出去的能量投射到 F1上的分率。求取各种情况下的总辐射系数和角系数(见表),是辐射传热的研究课题。
热辐射的基本概念 任何物体在发出辐射能的同时,也不断吸收周围物体发来的辐射能。一物体辐射出的能量与吸收的能量之差,就是它传递出去的净能量。物体的辐射能力(即单位时间内单位表面向外辐射的能量),随温度的升高增加很快。一般说来,当一物体受到其他物体投来的辐射(能量为Q)时,其中被吸收转为热能的部分为QA,被反射的部分为QR,透过物体的部分为QD,显然这些部分与总能量之间有下式所示的关系:
QA+QR+QD=Q如果把A=QA/Q称为吸收率,R=QR/Q称为反射率,D=QD/Q称为穿透率,则有:
A+R+D=1若物体的A=1,R=D=0,即到达该物体表面的热辐射的能量完全被吸收,此物体称为绝对黑体,简称黑体。若R=1,A=D=0,即到达该物体表面的热辐射的能量全部被反射;当这种反射是规则的,此物体称为镜体;如果是乱反射,则称为绝对白体。若D=1,A=R=0,即到达物体表面的热辐射的能量全部透过物体,此物体称为透热体。实际上没有绝对黑体和绝对白体,仅有些物体接近绝对黑体或绝对白体。例如:没有光泽的黑漆表面接近于黑体,其吸收率为0.97~0.98;磨光的铜表面接近于白体,其反射率可达0.97。影响固体表面的吸收和反射性质的,主要是表面状况和颜色,表面状况的影响往往比颜色更大。固体和液体一般是不透热的。热辐射的能量穿过固体或液体的表面后只经过很短的距离(一般小于1mm,穿过金属表面后只经过1μm),就被完全吸收。气体对热辐射能几乎没有反射能力,在一般温度下的单原子和对称双原子气体(如 Ar、He、H2、N2、O2等),可视为透热体,多原子气体(如CO2、H2O、SO2、NH3、CH4等)在特定波长范围内具有相当大的吸收能力。
辐射能力和吸收能力 理论研究证明,黑体的辐射能力E0为:
E0=σ0T4此式称为斯忒藩-波耳兹曼定律。式中T为绝对温度;σ0为黑体的辐射常数(或称斯忒藩-波耳兹曼常数),其值为5.669×10-8W/(m2·K4)。为应用方便,此式可改写为:
式中C0为黑体的辐射系数,其值为5.669W/(m2·K4)。此式表明,温度对热辐射的影响极大。低温时热辐射常可忽略(如普通换热器中);高温时(如炉膛内),则成为传热的主要方式。
实际物体的辐射能的波长分布规律,随物体和温度而异。设实际物体辐射任一波λ的辐射能力为Eλ,在同温度下的黑体辐射相同波长的能力为E0λ;若Eλ/E0λ=常数,即物体的辐射能力与波长无关,则这种物体称为灰体。大多数工程材料在热辐射波长范围内接近于灰体。灰体的辐射能力E可表示为:
式中C(
物体的辐射能力与同一温度下黑体的辐射能力之比ε,等于各自的辐射系数之比,即ε=E/E0=C/C0。ε称为黑度,它代表物体的相对辐射能力。G.R.基尔霍夫发现,任何物体的辐射能力与吸收率A的比值都相同,且恒等于同温度下绝对黑体的辐射能力,即:
此式称为基尔霍夫定律。它表明物体的吸收率与黑度在数值上相等,即物体的辐射能力越大,吸收能力也越大。
两固体间的辐射传热 两物体间辐射传热的速率Q12可表示为:
式中T1、T2分别为两物体的表面温度;F1为一物体的表面面积;φ12为以F1为基准的角系数,代表一物体辐射出去的能量投射到表面F2的分率,它取决于两物体的形状、大小和相对位置;C12为总辐射系数,其值与两物体的黑度、大小、形状和相对位置有关。可以证明
φ12F1=φ21F2式中F2为物体2的表面面积;φ21为以F2为基准的角系数,代表物体2辐射出去的能量投射到 F1上的分率。求取各种情况下的总辐射系数和角系数(见表),是辐射传热的研究课题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条