1) composite cylindrical tube
复合材料圆柱管
2) Composite cylindrical shell
复合材料圆柱壳
1.
Following Loves shell theory, the governing equations of the composite cylindrical shell associated with asymmetric deformation perturbance were obtained.
应用 L ove的壳体理论得到了非轴对称变形的复合材料圆柱壳的控制方程。
2.
A new systematic methodology for solving composite cylindrical shell structure, new type complex series methodology, is developed which is used to produce the general analytical solutions for the problem of bending, buckling,vibration of composite cylindrical shell structure.
本文考虑剪切变形的复合材料圆柱壳结构解析求解新体系一新型复级数体系,以此建立了考虑剪切变形的复合材料圆柱壳结构线性弯曲、振动、稳定问题一般解析解。
3.
Based on the correlation between the structure stability and its vibration behavior, the measured vibration frequency is regarded as the monitor parameter of buckling limit point of composite cylindrical shells.
本文根据结构振动与稳定性的相关性,以振动频率测试值作为监控参数进行了复合材料圆柱壳的失稳状态监测。
3) composite circular tube
复合材料圆管
1.
100,200,300,400 and 500mm,the bending strength of two kinds of fiber-reinforced composite circular tube are tested in the case of the tube core filled and un-filled steel rod.
对两组不同支距(100,200,300,400,500mm),在管芯加与不加塞子情况下的纤维增强复合材料圆管进行了弯曲试验。
4) laminated composite cylindrical shells
复合材料层合圆柱壳
1.
Finite element analysis for laminated composite cylindrical shells;
复合材料层合圆柱壳的有限元分析
5) thick laminated cylindrical shells
复合材料层合厚圆柱壳
6) composite thin-cylindrical panel
复合材料圆柱壳壁板
1.
The vibration characteristics of a composite thin-cylindrical panel embedded with shape memory alloy wires under thermal condition are investigated.
采用有限元软件ABAQUS实现了埋入形状记忆合金(SMA)丝的复合材料圆柱壳壁板结构热振动特性分析。
补充资料:复合材料的复合效应
复合材料的复合效应
composition effect of composite materials
复合材料的复合效应Composition effeet of Com-Posite materials复合材料特有的一种效应,包括线性效应和非线性效应两类。 线性效应包括平均效应、平行效应、相补效应和相抵效应。例如常用于估算增强体与基体在不同体积分数情况下性能的混合率,即 Pc一巧几+VmPm式中Pc为复合材料的某一性质,乃、几分别为增强体和基体的这种性质,VR、Vm则分别是两者的体积分数。这就是基于平均效应上的典型事例。另外关于相补效应和相抵效应,它们常常是共同存在的。显然,相补效应是希望得到的而相抵效应要尽可能避免,这个可通过设计来实现。 非线性效应包括乘积效应、系统效应、诱导效应和共振效应、其中有的己经被认识和利用,并为功能复合材料的设计提供了很大自由度;而有的效应则尚未被充分地认识和利用。乘积效应即已被用于设计功能复合材料。如把一种具有两种性能互相转换的功能材料X/y(如压力/磁场换能材料)和另一种Y/Z的换能材料(如磁场/电阻换能材料)复合起来,其效果是(X/D·(Y/Z)二X/Z,即变成压力/电阻换能的新材料。这样的组合可以非常广泛(见表)。系统效应的机理尚不很清楚,但在实际现象中已经发现这种效应的存在。例如交替迭层镀膜的硬度远大于原来各单一镀膜的硬度和按线性棍合率估算的数值,说明组成了复合系统才能出现的性质。诱导行为已经在很多实验中发现,同时这种效应也在复合材料的乘积效应┌──────┬──────┬──────────┐│甲相性质 │乙相性质 │复合后的乘积性质 ││ X/y │ Y/Z │沙到豹·(Y/公一义您 │├──────┼──────┼──────────┤│压磁效应 │磁阻效应 │压敏电阻效应 │├──────┼──────┼──────────┤│压磁效应 │磁电效应 │压电效应 │├──────┼──────┼──────────┤│压电效应 │场致发光效应│压力发光效应 │├──────┼──────┼──────────┤│磁致伸缩效应│压阻效应 │磁阻效应 │├──────┼──────┼──────────┤│光导效应 │电致效应 │光致伸缩 │├──────┼──────┼──────────┤│闪烁效应 │光导效应 │辐射诱导导电 │├──────┼──────┼──────────┤│热致变形效应│压敏电阻效应│热敏电阻效应 │└──────┴──────┴──────────┘复合材料界面的两侧发现,如诱导结晶或取向,但是尚未能利用这种效应来主动地设计复合材料。两个相邻的物体在一定的条件下会产生机械的或电、磁的共振,这是熟知的物理行为。复合材料是多种材料的组合,如果加以有目的性的设计,肯定可利用这种共振效应,但是目前尚未加以研究。(吴人洁)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条